
Transportation Systems in Buildings Vol 4 April 2022

Dynamic extension for Ideal Kinematics
Matthew Appleby, Richard Peters

Peters Research Ltd, UK

Abstract. This paper presents a new set of equations for modelling kinematic profiles using a
combination of mathematical and computational techniques. The implementation of these equations
will extend the capabilities of the kinematic model to produce asymmetric and dynamic profiles.
This will provide a more accurate model for standard lift systems as well as enable the modelling of
more complex systems.

Keywords: kinematics, lift, elevator, dynamic profile, ideal lift kinematics, twin lift system, 2 cars
per shaft, multi, multi-dimensional lift system, simulation

1 INTRODUCTION
Lift kinematics is the study of a lift car in a shaft without reference to mass or force. Variable speed
drives can be programmed to match reference velocity profiles. This paper will show a set of
equations which can be used to model a lift and produce a kinematic profile which can be used as a
reference for lift simulations and physical lifts.

In previous papers regarding lift kinematics, equations have been produced which model symmetric
profiles [1] and asymmetric profiles [2]. This paper will show a new set of equations which will
model dynamic profiles.

1.1 Symbols

d Lift journey distance (m)

vphase Velocity at end of given phase (m/s)

final_phase Final phase in car journey

aphase Maximum acceleration (m/s2)

jphase,0 Maximum jerk0 in given phase (rate of change of acceleration) (m/s3)

jphase,1 Maximum jerk1 in given phase (rate of change of acceleration) (m/s3)

pphase,0 Phase start time/period 0 start time

pphase,1 Period 1 start time

pphase,2 Period 2 start time

pphase,3 Period 3 start time

D(t) Distance travelled at time t (m)

V(t) Velocity at time t (m/s)

A(t) Acceleration at time t (m/s2)

J(t) Jerk at time t (m/s3)

dmin Minimum displacement

2

1.2 Definitions
symmetric profile
the profile of a journey with one target velocity, the same acceleration as deceleration and four
identical jerk values. See Fig. 1

asymmetric profile
the profile of a journey with one target velocity but different target acceleration and deceleration or
differing jerk values. See Fig. 2

dynamic profile
the profile of a journey with multiple target velocity values. Acceleration and jerk can also vary.
See Fig. 3

period
a section of time where the lift is at constant jerk. See Fig. 4 & Fig. 5

phase
a section of time where the lift is changing from one speed to another including the time it remains
at its final speed. A period starts and finishes with acceleration of 0 and contains a maximum of
four periods. See Fig. 4 & Fig. 6

journey
a section of time where the lift is changing displacement from when the lift begins to move, to when
it reaches its destination. Contains a minimum of two phases. See Fig. 4

1.3 Three types of profile
There are three types of kinematic profile that will be referred to in this paper:

1.3.1 Symmetric Profile

Figure 1 Symmetric Profile

Fig. 1 shows a profile produced when a symmetric model has been used to plot the kinematic
profile of a lift. This assumes that there will only be one target velocity and thus the lift is unable to
reduce or increase velocity even as the surrounding environment changes. It also makes some
assumptions about the kinematic parameters:

abs(j0,0) = abs(j0,1) = abs(j1,0) = abs(j1,1) (1)
abs(a0) = abs(a1) (2)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Ve
lo

ci
ty

 m
/s

Time (s)

3

v0,0 = v1,1 = vfinal_phase,1 = 0 (3)

This is the most used profile model and the equations for it can be found in ‘Ideal Lift Kinematics’
by Peters [1] as well as CIBSE Guide D Annex 2 [3]. Most lift systems aim for a symmetric profile
to produce a smooth ride quality.

1.3.2 Asymmetric Profile

Figure 2 Asymmetric Profile

Fig. 2 shows a profile when an asymmetric model has been used to plot the kinematic profile of a
lift. Like the symmetric profile, this model assumes that there will only be one target velocity,
however, it allows for different acceleration and deceleration values as well as differing jerk values.

These profiles can be produced using the equations given in ‘Quality and quantity of service in lift
groups’ by Gerstenmeyer [2]. The equations are an extension to the previous ideal lift kinematic
equations meaning they can model symmetric and asymmetric equations.

Applications include the modelling of lift cars which have a different acceleration to deceleration,
often due to poor motor control. Asymmetric profiles can also be applied to improve lift system
performance where there are two cars per shaft as cars sharing a shaft impose additional safety
constraints. For example, a lower deceleration may be used when the lower and upper cars need to
be moved closer than allowed by the preferred safety distance.

1.3.3 Dynamic Profile

Figure 3 Dynamic Profile

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Ve
lo

ci
ty

 (m
/s

)

Time (s)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 2 4 6 8 10 12 14 16 18

Ve
lo

ci
ty

 (m
/s

)

Time (s)

4

Fig. 3 shows a profile when a dynamic model has been used to plot the kinematic profile of the lift.
This level of complexity is achieved when the lift changes its target velocity mid journey to slow
down or speed up the car based on the location of the other cars in the shaft. Each update contains a
target velocity, jerk0, jerk1, acceleration and a displacement. These update parameters either
replace current/future parameters or create a new phase.

This model provides more flexibility than the asymmetric profile, giving more control of the
location and motion of the lift car to improve the performance of the system. For example, if a
higher car traveling up has been delayed longer than expected, a lower car might need to reduce its
velocity until the path is clear for it to accelerate back up to speed. This slow down option makes it
more acceptable to start the lower car before the upper car is guaranteed to be moving out of the
way. The increase in performance is particularly valuable to multi-dimensional lift systems with
more than two lift cars per shaft. [2].

1.4 Three segments of a profile

Figure 4 Period, Phase and Profile labelled profile

Fig. 4 shows the kinematic profile of one symmetric journey. The first period and phase, and the
journey are labelled.

Phase

Journey

Period

5

Figure 5 period labelled profile

Fig. 5 shows the jerk profile of one symmetric journey. Each period has a different jerk value and
the period count resets to 0 when the car enters a new phase.

Figure 6 phase labelled profile

Fig. 6 shows the velocity profile of a dynamic profile. The phases have been labelled to demonstrate
where phases start and stop on dynamic profiles.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Je
rk

 (m
/s

2)

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Ve
lo

ci
ty

 (m
/s

)

Time (s)

Period 0

Period 1

Period 2

Period 3

Period 0

Period 1

Period 2

Phase 0

Phase 1

Phase 2

Phase 3

6

2 OVERVIEW OF PREVIOUS RESEARCH

2.1 Previous Work
2.1.1 Analytical Method
Peters provided a set of equations which model the kinematic profile of a symmetric journey [1].
Each journey is divided into seven periods, each with their own set of equations. Each equation
does the entire integration including the addition of the starting value at the previous period. This
model provides a straightforward set of individual equations which do not approximate each
integration. These equations are transparent and functional but very long and lack flexibility. This is
also the method described in Annex 2 of Guide D [3].

Gerstenmeyer provided a set of equations which model the kinematic profile of an asymmetric
journey [2]. This uses similar logic to the symmetric model however allows four different jerk
inputs and two different acceleration values for the two phases involved. Whilst this improves the
flexibility of the model, it also makes the equations even longer and harder to implement.

In the cases where a lift cannot reach the inputted velocity or acceleration, Peters proposed
alternative models called ‘case B’ and ‘case C’ [1], Gerstenmeyer however proposed using the same
equations by first reducing the velocity and acceleration to the maximum possible values that can be
reached [2].

2.1.2 Computational Method
Computational integration methods include quadrature rule, generalised midpoint rule, adaptive
algorithms and extrapolation. These methods use calculations which approximate integration to find
the profile values without long equations. This method is far more flexible than the analytical
method as it does not rely on period separations. However, the approximation required in the
computational method decreases the accuracy of the profile. [4]

2.2 Authors’ contribution

The authors have derived an alternative set of equations which map onto the existing equations but
allow for more flexible input parameters thus allowing the controller to have more flexibility over
the shape of a lift’s kinematic profile. The new equations use a combination of analytical and
computational techniques and use the Gerstenmeyer method for dealing with invalid input
parameters [2].

7

3 FUNCTIONAL METHOD

Figure 7 Logic diagram instantiation

The three boxes in Fig. 7 represent the three coded classes. The first box represents the Simulator or
Lift System and will be the calling code. The Profile Generator is a class which takes some
parameters upon instantiation of an object. The resulting object contains a set of public arrays which
plot the profile and can be used by the calling code. The Profile Generator uses the static functions
from the Kinematic Equations class to produce the profile. This Kinematic Equations class can be
used by other coded classes to perform all the calculations our previous symmetric Kinematic
Equations class could do and more.

Figure 8 Logic diagram update

For dynamic profiles, the calling code can invoke an update method on the profile object with a new
set of inputs including the time at which the update was sent. This will modify the input parameters
and then modify the profile arrays.

8

4 MATHEMATICAL METHOD

4.1 Phase start times

𝑝𝑝0 = 0 (4)

p0 will only equal 0 in the first phase. For all the middle phases in a dynamic profile, p0 will be
determined by the time at which the update is sent. For the final phase p0 is calculated by finding
the difference between the target displacement and the minimum displacement and then calculating
how long the lift must travel at its final velocity (vfinal_phase) to reach the target displacement.

𝑝𝑝0 = 𝑝𝑝3 + 𝑑𝑑−𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

 (5)

The period start times p1-3 are calculated using the following equations which can be derived from
equations (8-1/2/3) in [2].

𝑝𝑝1 = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎[0]

+ 𝑝𝑝0 (6)

𝑝𝑝2 = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎+1−𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

−
𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎�𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0+𝑗𝑗𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1�

−2⋅𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0⋅𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1
+ 𝑝𝑝0 (7)

𝑝𝑝3 = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎+1−𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

+
𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎�𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0−𝑗𝑗𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1�

−2⋅𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0⋅𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1
+ 𝑝𝑝0 (8)

4.2 Kinematic equations

𝐽𝐽(𝑡𝑡) = 𝑗𝑗 (9)

Starting with a constant jerk, acceleration can be found by integrating the jerk value with respect to
time and adding the starting acceleration at the beginning of the current period (pthis)

𝐴𝐴(𝑡𝑡) = ∫ 𝐽𝐽(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑡𝑡
𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐴𝐴(𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑖𝑖) (10)

Velocity can be calculated two ways, by either adding the velocity change onto the starting velocity
(V at pthis), or by removing the velocity change from the target velocity (V at pnext).

𝑉𝑉(𝑡𝑡) = ∫ 𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑡𝑡
𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝑉𝑉(𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑖𝑖) (11)

 𝑉𝑉(𝑡𝑡) = ∫ 𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝑉𝑉(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (12)

Displacement is the integration of velocity plus the displacement at the beginning of the current
period.

𝐷𝐷(𝑡𝑡) = ∫ 𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑡𝑡
𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐷𝐷(𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑖𝑖) (13)

See Appendix A for the full equations for each period.

4.3 Allowed Updates

9

Fig. 9 Initial profile

Fig. 10 Period 0 or 1 change

Figure 11 Period 2 change

Figure 12 Period 3 change

If the car is in period 0 or 1, a command to increase the velocity can be accepted. The lift will
continue accelerating to the higher speed. For example, in Fig. 9 the initial profile was set to
reach a velocity of 2m/s. Because the target velocity was changed to 2.5m/s before the end of
period 1, the new speed profile is the same as if the higher speed had been commanded at the
beginning of the trip, see Fig. 10.

If, however, the lift has entered period 2 and the same command is sent to increase the velocity
to 2.5m/s, the lift must finish its current phase before starting to accelerate again up to a higher
velocity thus creating a new phase, see Fig. 11. The reason for completing the period is to avoid
the added complexities required in changing the jerk mid-period whilst acceleration is not
constant.

If the update is sent when the lift is no longer accelerating but is moving at a constant speed in
period 3, a new phase is created. The new phase starts at the time the update was sent as seen in
Fig. 12.

Figure 13 Initial profile

Figure 14 Period 0
change

Figure 15 Period 0 - 2
change

If a valid update is sent in period 0 to increase acceleration, the car will continue to jerk up to a
higher acceleration. For example, in Fig. 13 the initial profile was set to reach an acceleration of
0.5m/s2. Because the acceleration was changed to 0.75m/s2 before the end of period 0, the new

10

acceleration profile will be the same as if the higher acceleration has been commanded at the
beginning of the trip, see Fig. 14.

If a valid update is sent to change the deceleration at any time before the final phase, the
working parameters will be updated, see Fig. 15. This update must arrive before the car enters
period 3 and, if the deceleration is decreased, before the car would have needed to enter period 3
with the new deceleration.

If an update is sent to increase the displacement and the lift has not entered its final phase, this
will always be valid, and the profile should be adjusted accordingly. If the update requests a
decreased displacement, it must first be calculated if the lift can stop before the requested
displacement in the given jerk, acceleration and velocity.

4.4 Adaptions and rejections
4.4.1 High acceleration
When the car cannot reach the input acceleration and then return to constant velocity without
surpassing the target velocity, the acceleration is too high and must be reduced. This is done
using equation 8-12 [2].

𝑎𝑎 = �2𝑣𝑣𝑗𝑗1𝑗𝑗2
𝑗𝑗1+𝑗𝑗2

 (14)

4.4.2 High velocity
When the car cannot reach the input velocity and then slow down again without surpassing the
destination displacement, the velocity is too high and must be reduced.

Due to the use of computational techniques in this method, an analytical equation has not been
produced to solve for the maximum possible velocity. Instead, a computational method is used
which implements trial and improvement to find the new velocity value.

4.4.3 Low displacement
When the car is mid journey and is sent an update to stop at a displacement lower than the
minimum stopping distance, this kinematic update must be rejected.

4.4.4 Late update
When the car is mid journey and is sent an update to change a parameter that has already been
used or is impossible to implement, this kinematic update must be rejected. One example of this
kind of update is when a command is sent in the final phase of a lift’s journey.

5 APPLICATION

5.1 More accurate lift traffic analysis
When modelling lift kinematics, it is currently assumed that the acceleration is the same as the
deceleration and that all four jerk values are the same. In a real lift system, acceleration and
deceleration can vary in a single journey as seen by accelerometer data. As more data is
analysed, more accurate models can be produced when calculating lift system performance.

11

5.2 Lift systems with two cars per shaft
When two cars share a shaft, the system performance can be improved by giving each car the
option to follow a deliberate asymmetric profile thus improving the performance of the system
[2].

5.3 Multi-dimensional lift system
For multi-dimensional systems, cars can be given the option to change velocity based on the
location of other cars in the system. This can prevent unnecessary stops, improving user
experience, and can reduce waiting times, improving performance.

5.4 Improvements to monitoring

Lift performance measurement tools [5] currently try to map the lift’s motion to a symmetric
profile. Not only will this new model allow monitoring of deliberately asymmetric lifts, data
from which will improve simulation inputs, it will also allow for the monitoring of poorly
adjusted symmetric lifts thus enhancing maintenance.

6 CONCLUSION
This paper provides a set of equations which accurately model a lift’s kinematic profile for
symmetric, asymmetric and dynamic journeys. This will enable simulations to model lift motion
more accurately as well as improve the performance of lift dispatchers. These improvements will
be most noticeable in lift systems with two lift cars per shaft and with multi-dimensional lifts.
The equations will also enable improvements in surveying, maintenance and many more
technologies.

Currently the solution uses a computational brute force technique to find the maximum velocity
and quickest stop floor at any given time slice. There are improvements which can be made to
these solutions which will save time and processing power. Although time is less of a concern
when simulating a lift system, the need for efficient algorithms becomes more crucial for
dispatching and monitoring technologies.

ACKNOWLEDGEMENTS

The authors acknowledge the work of Gabrielle Anderson and her research into the field of lift
kinematics with multiple maximum velocities and with separate acceleration and deceleration.
The authors would like to thank Nishad Deokar for checking the maths presented in this paper
and continuing the research surrounding dynamic kinematics.

7 REFERENCES

[1] R. Peters, “Ideal Lift Kinematics,” in Proceedings of ELEVCON ’95, Hong Kong, 1995.

[2] S. Gerstenmeyer, Quality and quantity of service in lift groups, University of Northampton,
2018.

[3] CIBSE, CIBSE Guide D: Transportation systems in buildings, 2020.

12

[4] T. Croft, R. Davison Mathematics for engineers, Pearson Prentice Hall, 2015.

[5] R. Peters, “Lift Performance Time,” in Proceedings of the 2nd Symposium on Lift and
Escalator Technologies, Northampton, 2012.

13

APPENDIX

Appendix A
Period 0

𝐽𝐽(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0

𝐴𝐴(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 ⋅ 𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0

𝑉𝑉(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 ⋅
(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0)2

2
+ 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝐷𝐷(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 ⋅
�𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0�

3

6
+ 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0) + 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0)

Period 1

𝐽𝐽(𝑡𝑡) = 0

𝐴𝐴(𝑡𝑡) = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑉𝑉(𝑡𝑡) = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1) + 𝑉𝑉(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1)

𝐷𝐷(𝑡𝑡) = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅
(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1)2

2
+ 𝑉𝑉(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1) ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1) + 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1)

Period 2

𝐽𝐽(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1

𝐴𝐴(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2) + 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑉𝑉(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅
�𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3�

2

2
+ 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎+1

𝐷𝐷(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅
(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3)3

6
+ 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎+1 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2) − 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅

(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3)3

6
+ 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2)

Period 3

𝐽𝐽(𝑡𝑡) = 0

𝐴𝐴(𝑡𝑡) = 0

𝑉𝑉(𝑡𝑡) = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1

𝐷𝐷(𝑡𝑡) = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3) + 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3)

14

Appendix B
Period 0

𝐽𝐽(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0

𝐴𝐴(𝑡𝑡) = � 𝐽𝐽(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑉𝑉(𝑡𝑡) = � 𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝑉𝑉(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0)

𝐷𝐷(𝑡𝑡) = � 𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0)

Period 1

𝐽𝐽(𝑡𝑡) = 0

𝐴𝐴(𝑡𝑡) = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑉𝑉(𝑡𝑡) = � 𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝑉𝑉�𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1�

𝐷𝐷(𝑡𝑡) = � 𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐷𝐷�𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1�

 Period 2

𝐽𝐽(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2

𝐴𝐴(𝑡𝑡) = � 𝐽𝐽(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐴𝐴�𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2�

𝑉𝑉(𝑡𝑡) = � 𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3

𝑡𝑡 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+ 𝑉𝑉�𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3�

𝐷𝐷(𝑡𝑡) = � 𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐷𝐷�𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2�

Period 3

𝐽𝐽(𝑡𝑡) = 0

𝐴𝐴(𝑡𝑡) = 0

𝑉𝑉(𝑡𝑡) = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1

𝐷𝐷(𝑡𝑡) = � 𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑡𝑡

𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3 𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝐷𝐷�𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3�

15

Appendix C
Function

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 𝑗𝑗,𝑎𝑎) = 𝑗𝑗 ⋅ 𝑡𝑡 + 𝑎𝑎

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡, 𝑗𝑗, 𝑣𝑣) =
𝑗𝑗
2
⋅ 𝑡𝑡2 + 𝑣𝑣

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡,𝑎𝑎) = 𝑎𝑎 ⋅ 𝑡𝑡

Period 0

𝐽𝐽(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0

𝐴𝐴(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴((𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0), (𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0), 0)

𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0), 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0, 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎�

𝐷𝐷(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0 ⋅
�𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0�

3

6
+ 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0) + 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0)

Period 1

𝐽𝐽(𝑡𝑡) = 0

𝐴𝐴(𝑡𝑡) = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1),𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎� + 𝑉𝑉(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1)

𝐷𝐷(𝑡𝑡) = 𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅
(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1)2

2
+ 𝑉𝑉(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1) ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1) + 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1)

Period 2

𝐽𝐽(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1

𝐴𝐴(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴((𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2), (𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1), (𝑎𝑎𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎))

𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3), 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1, 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎+1�

𝐷𝐷(𝑡𝑡) = 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅
(𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3)3

6
− 𝑗𝑗𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅

(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3)3

6
+ 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎+1 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2)

+ 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,2)

Period 3

𝐽𝐽(𝑡𝑡) = 0

𝐴𝐴(𝑡𝑡) = 0

𝑉𝑉(𝑡𝑡) = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1

𝐷𝐷(𝑡𝑡) = 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,1 ⋅ (𝑡𝑡 − 𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3) + 𝐷𝐷(𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,3)

16

Appendix D
The following appendix contains examples of input parameters and resulting profiles. They
attempt to demonstrate all categories of profile and can be used as test cases for any future
developments.

Initiate

jerk[4] = { 0.5, 0.75, 0.25, 1.0 };
acceleration[2] = { 0.5, 0.75 };
velocity = 2.0;
displacement = 65.0;

This is an asymmetric kinematic profile generated by the starting variables. In many cases, this
will be enough to plot the lift journey.

Period 1 - 4 displacement change

At t = 1.5, go to displacement = 60

if (running_time > 1.49 && running_time < 1.51) {
displacement = 60.0;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

-0.5
0

0.5
1

1.5
2

2.5

0 10 20 30 40

Velocity

0

20

40

60

80

0 10 20 30 40

Displacement

-1

-0.5

0

0.5

1

0 10 20 30 40

Acceleration

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40

Jerk

17

In this case, up to the time of change, the profile for displacement = 60.0 and displacement =
65.0 is the same. This means the code can delete the old displacement target and adopt the new
one. This is an asymmetric profile. The result is the same as if the initiator had been given 60.0
instead of 65.0.

Period 1 & 2 velocity change

At t = 1.5, go to velocity = 2.5

if (running_time > 1.49 && running_time < 1.51) {
velocity = 2.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

In this case, up to the time of change, the profile for velocity = 2.5 and velocity = 2.0 is the
same. This means the code can delete the old velocity target and adopt the new one. This is an
asymmetric profile. The result is the same as if the initiator had been given 2.5 instead of 2.0.

Period 3 velocity change

At t = 4.5, go to velocity = 2.5

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Velocity

0

20

40

60

80

0 10 20 30 40

Displacement

-1

0

1

2

3

0 10 20 30 40

Velocity

0

20

40

60

80

0 10 20 30 40

Displacement

18

if (running_time > 4.49 && running_time < 4.51) {
velocity = 2.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

Period 1 acceleration change

At t = 0.5, go to acceleration = 0.75

if (running_time > 0.49 && running_time < 0.51) {
acceleration[0] = 0.75;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

In this case, up to the time of change, the profile for acceleration[0] = 0.75 and acceleration[0] =
0.5 is the same. This means the code can delete the old acceleration target and adopt the new
one. This is an asymmetric profile. The result is the same as if the initiator had been given 0.75
instead of 0.5.

-1

-0.5

0

0.5

1

0 10 20 30 40

Acceleration

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Velocity

0

1

2

3

0 10 20 30 40

Velocity

0

20

40

60

80

0 10 20 30 40

Displacement

19

In this case, the change in velocity is buffered and only implemented once period 3 has
completed. Halting period 3 part way and returning to period 2 presented a great challenge. This
is a dynamic profile. The profile is equivalent to the change being made at t = 4.9.

This could be improved in future versions.

Period 4 velocity change

At t = 8, go to velocity = 2.5

if (running_time > 7.99 && running_time < 8.01) {
velocity = 2.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

At t = 8, the lift begins accelerating to its new velocity. This will likely be the most common
type of dynamic profile change.

Period 1 - 4 deceleration change

At t = 1.5, go to deceleration = 0.25

if (running_time > 1.49 && running_time < 1.51) {
acceleration[1] = 0.25;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

-1

0

1

2

3

0 10 20 30 40

Velocity

0

20

40

60

80

0 10 20 30 40

Displacement

20

In this case, up to the time of change, the profile for acceleration[1] = 0.75 and acceleration[1] =
0.25 is the same. This means the code can delete the old acceleration target and adopt the new
one. This is an asymmetric profile. The result is the same as if the initiator had been given 0.25
instead of 0.75.

Period 1 & 2 jerk 2 change

At t = 1.5, go to jerk 2 = 0.5

if (running_time > 1.49 && running_time < 1.51) {
jerk[1] = 0.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

In this case, up to the time of change, the profile for jerk[1] = 0.5 and jerk[1] = 0.75 is the same.
This means the code can delete the old acceleration target and adopt the new one. This is an
asymmetric profile. The result is the same as if the initiator had been given 0.5 instead of 0.75.

Period 1 - 4 jerk 3 & 4 change

At t = 1.5, go to jerk 3 = 0.5 and jerk 4 = 0.5

if (running_time > 1.49 && running_time < 1.51) {
jerk[2] = 0.5;
jerk[3] = 0.5;
profile_one.ChangeProfile(running_time,

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50

Acceleration

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Velocity

-0.5

0

0.5

1

1.5

0 10 20 30 40

Jerk

-1

-0.5

0

0.5

1

0 10 20 30 40

Acceleration

21

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

Modified inputs

Too high velocity change

At t = 8, go to velocity = 10

if (running_time > 7.99 && running_time < 8.01) {
velocity = 10.0;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);

time_of_destination = profile_one.TimeOfDestination();
}

The velocity has been reduced to 5.5 which is the maximum velocity value, to one decimal
place, that will allow the lift to stop before passing the destination floor.

Too high acceleration change

At t = 8, go to deceleration = 1.0

if (running_time > 1.49 && running_time < 1.51) {
acceleration[1] = 1.0;

-1

-0.5

0

0.5

1

0 10 20 30 40

Jerk

-1

-0.5

0

0.5

1

0 10 20 30 40

Acceleration

-1

-0.5

0

0.5

1

0 5 10 15 20 25

Acceleration

-2

0

2

4

6

0 5 10 15 20 25

Velocity

22

profile_one.ChangeProfile(running_time,
 jerk,
 acceleration,
 velocity,
 displacement);

time_of_destination = profile_one.TimeOfDestination();
}

The acceleration value has been reduced to allow the lift to stop before passing the destination
floor. The input was 1.0 but the lift never exceeds 0.89 in the final decelerating period.

Rejected Changes

Too short displacement change

At t = 8, go to displacement = 10

if (running_time > 7.99 && running_time < 8.01) {
displacement = 10.0;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift will not be able to stop in time to meet a displacement of 10m

Final phase displacement change

At t = 35, go to displacement = 60

if (running_time > 34.99 && running_time < 35.01) {
displacement = 60.0;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift has already passed 60m displacement

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40

Jerk

-1

-0.5

0

0.5

1

0 10 20 30 40

Acceleration

23

Final phase velocity change

At t = 35, go to velocity = 2.5

if (running_time > 34.99 && running_time < 35.01) {
velocity = 2.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift is currently decelerating so it is too late to change the velocity.

Period 2 - 4 acceleration change

At t = 1.5, go to acceleration = 0.25

if (running_time > 34.99 && running_time < 35.01) {
acceleration[0] = 0.25;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift is currently accelerating or has finished accelerating so it is too
late to change the acceleration.

Final phase deceleration change

At t = 35, go to deceleration = 0.25

if (running_time > 34.99 && running_time < 35.01) {
acceleration[1] = 0.25;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift is currently decelerating so it is too late to change the
deceleration.

Period 1 - 4 jerk 1 change

At t = 1.5, go to jerk 1 = 0.25 and jerk 2 = 0.25

if (running_time > 1.49 && running_time < 1.51) {
jerk[0] = 0.25;

24

profile_one.ChangeProfile(running_time,
 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift is currently accelerating or has finished accelerating so it is too
late to change the jerk 1 or 2.

Period 3 & 4 jerk 2 change

At t = 8, go to jerk 2 = 0.3

if (running_time > 7.99 && running_time < 8.01) {
jerk[1] = 0.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift has already reached of passed the jerk 2 period

Final phase jerk 3 & 4 change

At t = 35, go to jerk 3 = 0.5 and jerk 4 = 0.5

if (running_time > 34.99 && running_time < 35.01) {

jerk[2] = 0.5;

jerk[3] = 0.5;
profile_one.ChangeProfile(running_time,

 jerk,
 acceleration,
 velocity,
 displacement);
 time_of_destination = profile_one.TimeOfDestination();
}

This change is rejected as the lift is currently decelerating so it is too late to change the jerk
values.

	1 Introduction
	1.1 Symbols
	1.2 Definitions
	1.3 Three types of profile
	1.3.1 Symmetric Profile
	1.3.2 Asymmetric Profile
	1.3.3 Dynamic Profile

	1.4 Three segments of a profile

	2 Overview of previous research
	2.1 Previous Work
	2.1.1 Analytical Method
	2.1.2 Computational Method

	2.2 Authors’ contribution

	3 Functional Method
	4 Mathematical Method
	4.1 Phase start times
	4.2 Kinematic equations
	4.3 Allowed Updates
	4.4 Adaptions and rejections
	4.4.1 High acceleration
	4.4.2 High velocity
	4.4.3 Low displacement
	4.4.4 Late update

	5 Application
	5.1 More accurate lift traffic analysis
	5.2 Lift systems with two cars per shaft
	5.3 Multi-dimensional lift system
	5.4 Improvements to monitoring

	6 Conclusion
	ACKNOWLEDGEMENTS
	7 References
	Appendix
	Appendix A
	Period 0
	Period 1
	Period 2
	Period 3

	Appendix B
	Period 0
	Period 1
	Period 2
	Period 3

	Appendix C
	Function
	Period 0
	Period 1
	Period 2
	Period 3

	Appendix D
	Initiate
	Period 1 - 4 displacement change
	Period 1 & 2 velocity change
	Period 3 velocity change
	Period 1 acceleration change
	Period 4 velocity change
	Period 1 - 4 deceleration change
	Period 1 & 2 jerk 2 change
	Period 1 - 4 jerk 3 & 4 change
	Modified inputs
	Too high velocity change
	Too high acceleration change
	Rejected Changes
	Too short displacement change
	Final phase displacement change
	Final phase velocity change
	Period 2 - 4 acceleration change
	Final phase deceleration change
	Period 1 - 4 jerk 1 change
	Period 3 & 4 jerk 2 change
	Final phase jerk 3 & 4 change

