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Abstract. This paper deals with the mathematical derivation of the continuous trip function of a lift. 
This derivation applies not only to a lift but also to any mass-inert system that starts moving from 
standstill, runs up to a maximum speed or a rated speed, to continue for some time, and then stops 
again after deceleration at completion of its trip along a predetermined track. The trip function 
determines the traveled distance and the (total) flight time in a continuous relationship with time, 
rated speed, maximum acceleration and jerk. First, adjustable continuous functions for jerk are 
derived using the shape factor ‘φ’, by which a ‘versine-shaped’ continuous course for jerk is 
realized. These functions for jerk are ultimately integrated to functions for traveled distance. All 
kinematic cases of the trip function, such as a short trip without reaching the rated speed, are treated 
with elaboration of the corresponding specific equations for the total flight time, maximum 
achieved speed, etc. 
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1 INTRODUCTION 
In the literature about lift kinematics the used formulas for traveled distances and journey times are 
based on a ‘simplified model’ for the trip function with a ‘jumping’ and discontinuous course of the 
jerk and acceleration functions of time: j(t) and a(t). The question is to what extent the results of the 
simplified model might deviate from reality with regard to mass-inert systems, if they do. The so-
called ‘shape factor’ φ has been introduced to obtain adjustable continuous initial functions for jerk 
as a starting point for the integration process to acceleration, speed and traveled distance. This 
shape factor should be given a value between 0.5 and 1 with preference for higher values as 0.9 to 
0.95 to keep the duration of jerk as short as possible to improve ride comfort for passengers. 

The results of the continuous trip function are compared to the results of the equations given in the 
literature. The conclusion is that the equations and formulas based on the simplified model appear 
to be sufficient accurate for the calculation of handling capacity, journey times, etc. of lifts. The 
effect of varying φ is greatest for (very) short trips where the rated speed is briefly continued or not 
even reached. Even in that case the deviation of the results of the equations from literature for 
handling capacity (i.e. number of passengers transported) from the results of the continuous trip 
function does not exceed 0.5% when φ = 0.95. Nevertheless, the shape factor φ can be useful for 
better and freely adjusting of arithmetic model profiles to actually measured profiles of jerk, 
acceleration, speed and traveled distance. 

2 THE TRIP FUNCTION 
2.1 Course in 7 phases 
The course of a trip of a lift is a continuous function from time t, which is segmented in 7 phases. 
The trip function is determined by successive integration of the jerk j [m/s3], acceleration a [m/s2] 
and speed v [m/s] to the traveled distance s [m]. The manufacturer and the type of the lift determine 
the rated speed V, the maximum acceleration A and the maximum jerk J. In practice are, because of 
the comfort for the passengers, the maximum acceleration and maximum jerk even for fast lifts 
limited to respectively A = 1.2 m/s2 and J = 1.5 m/s3. The rated speed depends on the total travel of 
the lift. In most cases, the rated speed V is between 1.0 m/s and 6.0 m/s. 
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For the trip function, the time t is the only real independent variable. The maximum jerk J, the 
maximum acceleration A, the rated speed V and the shape factor φ (see section 2.3) are fixed values, 
which are predetermined by ride comfort and the technical specifications of the lift. That results for 
the traveled distance in this function: 𝒔𝒔(𝒕𝒕) = 𝒇𝒇(𝒕𝒕, 𝑱𝑱,𝑨𝑨,𝑽𝑽,𝝋𝝋). 

The 7 phases are: 

1. 𝟎𝟎 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 Start at t0 = 0 s and run-up until at t1 the maximum acceleration A is reached. 
2. 𝒕𝒕𝟏𝟏 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟐𝟐 Maximum acceleration A is reached at t1 and continued until t2. 
3. 𝒕𝒕𝟐𝟐 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟑𝟑 Reduction of acceleration to 0 m/s2 from t2 until the rated speed V is reached 

at t3. 
4. 𝒕𝒕𝟑𝟑 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟒𝟒 Riding at rated speed V from t3 to t4. 
5. 𝒕𝒕𝟒𝟒 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟓𝟓 From t4 increasing deceleration until at t5 de maximum deceleration –A is 

reached. 
6. 𝒕𝒕𝟓𝟓 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟔𝟔 Maximum deceleration –A is reached at t5 and continued until t6. 
7. 𝒕𝒕𝟔𝟔 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟕𝟕 Slow-down from t6 to end of the ride and stop at t7 (=TXX). The index XX of 

TXX refers to the kinematic case of the trip (very short to full with rated speed 
reached), see Table 1. Stop is at t7 = TT. 

 

Figure 1 Overview of the traveled distance and phases of the trip function 

2.2 References to equations and milestones 
This paper contains equations, which originate from literature [2] and [3]. These equations are 
numbered as (6.##) and (A2.#), respectively. All other equations are numbered consecutively 
beginning with (1) to the end of the paper. For the ease of reading the sequence of the derivation, 
previous equations from this paper and references to literature are sometimes quoted or repeated 
with the corresponding number. 

Wherever a found solution in this derivation corresponds to a result in the literature, e.g. when  
φ = 1, this is marked by a reference, like this: 
 𝑣𝑣(𝑡𝑡1) = + 𝐴𝐴2

2𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.4) 

Throughout this derivation the milestones t = t0 = 0 s, t = t1 to t = TXX and the phases are related to 
the same events. For example, t3 is in every kinematic case the moment when the maximum 
achieved speed or the rated speed is reached (a(t3) = 0 m/s2). This applies even when events 
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coincide (e.g. rated speed just reached at t3 followed by immediate deceleration and thus not 
continued until t4) or are skipped (e.g. no continuation of the rated speed at all, because it is not 
reached). 

2.3 Shape factor φ 
The shape factor φ determines in phase 1: 0 ≤ t ≤ t1 during the increase of the acceleration to A for 
how long the maximum jerk J is continued. Together with the values for the maximum acceleration 
A and the rated speed V, the shape factor φ determines the total duration of the acceleration until the 
rated speed V is reached. The value of φ must be between 0.5 and 1. The maximum jerk J is 
continued between ta and tb: 

 𝑡𝑡𝑎𝑎 = +(1 − 𝜑𝜑) ∙ 𝑡𝑡1 (1) 
 𝑡𝑡𝑏𝑏 = +𝜑𝜑 ∙ 𝑡𝑡1 (2) 
 𝑡𝑡𝑎𝑎 = +𝑡𝑡1 − 𝑡𝑡𝑏𝑏 (3) 

The main assumption is that the jerk value changes from 0 m/s3 to +J or –J and vice versa within 
the time intervals 0 ≤ t ≤ ta and tb ≤ t ≤ t1, are represented by versine functions of t, see Eq. (16) and 
(18). 

Fig. 2 shows the effect on the jerk of the values for φ: 0.5, 0.75, 0.95 and 1. If φ < 0.5 the maximum 
value for the jerk J will be reached no more. 

  

Figure 2 Effect of shape factor φ on jerk during phase 1 

In Fig. 2 is visible that the time t1 to reach acceleration A increases when the value of φ is lower. 
The value of the product A = φ∙J∙t1 is ‘constant’; A = ∫ j(t)dt from t = t0 = 0 s to t = t1. 
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The shape factor φ returns in phase 3: t2 ≤ t ≤ t3 where it applies to the decrease of the acceleration 
from A to 0 m/s2 at t3 (the moment of reaching the rated speed V). In the phases 5 and 7, the shape 
factor φ is applied again for the deceleration from V to stop. 

In the derivation of the trip function (see section 2.8), the value φ = 0.95 (the partly visible grey 
‘2nd’ curve in Fig. 2) is applied in many cases. Comfort for passengers of lifts is increased when the 
duration of jerk is minimized by using the highest possible realistic value of φ. Whether this value  
φ = 0.95 is indeed common practice, has to be confirmed by the lift industry. 

2.4 Discontinuities in the functions j(t) and a(t) from literature 

2.4.1 Considerations 
In the literature a simplified model is used for the functions for jerk j(t) and acceleration a(t) see 
Fig. 7. This model shows discontinuities at the transition points between continuous phases of these 
functions. 
For example, at t = t1 the linear increasing acceleration changes from 𝑎𝑎(𝑡𝑡1) = 𝐽𝐽 ∙ 𝑡𝑡1 = 𝐴𝐴 ‘suddenly’ 
to constant acceleration 𝑎𝑎(𝑡𝑡1) = 𝐴𝐴. This sudden change of characteristics applies to the driving 
force and of course (by Newton’s 2nd law), directly to the rate of change of momentum at t = t1. 
‘Smooth’ transitions of jerk and acceleration are more probable in real mass-inert systems, like lifts, 
which are powered by an electrical motor driving the car with load, counterweight, suspension and 
compensation ropes or chains, drive sheave and pulleys. That is because of the total mass m of the 
system in motion is large in relation to the driving force. The question, however, is whether these 
discontinuous transitions really imply inaccuracy in the results for speed and traveled distance. To 
answer that question the law of conservation of momentum must be applied. 

2.4.2 Gain of momentum at t1 in the simplified model 
For the simplified model the momentum before and after t = t1 can be determined with these three 
equations from [2] and [3]: 
 𝑡𝑡1 = + 𝐴𝐴

𝐽𝐽
 (A2.3) 

 𝑣𝑣1(𝑡𝑡) = + 𝐽𝐽
2
∙ 𝑡𝑡2 (A2.4) 

 𝑣𝑣2(𝑡𝑡) = +𝐴𝐴 ∙ 𝑡𝑡 − 𝐴𝐴2

2𝐽𝐽
 (6.19) 

The total mass m [kg] of the system (lift), involved in the momentum, includes all moving and 
rotating components as mentioned before. 

The starting point is that the two functions for momentum p1(t) for t ≤ t1 Eq. (4) and p2(t) for  
t ≥ t1 Eq. (5) must match each other equally at t = t1 Eq. (6): 
 𝑝𝑝1(𝑡𝑡) = +𝑚𝑚 ∙ 𝑣𝑣1(𝑡𝑡) = + 𝑚𝑚𝐽𝐽

2
∙ 𝑡𝑡2 for t ≤ t1 (4) 

 𝑝𝑝2(𝑡𝑡) = +𝑚𝑚 ∙ 𝑣𝑣2(𝑡𝑡) = +𝑚𝑚𝐴𝐴 ∙ 𝑡𝑡 − 𝑚𝑚𝐴𝐴2

2𝐽𝐽
 for t ≥ t1 (5) 

 𝑝𝑝1(𝑡𝑡1) = 𝑃𝑃2(𝑡𝑡1) = 𝑝𝑝(𝑡𝑡1) for t = t1 (6) 

The functions for momentum should, because of conservation of momentum, match also close at a 
short time interval Δt before and after t = t1: 
 𝑝𝑝1(𝑡𝑡1 − ∆𝑡𝑡) ≈ 𝑝𝑝(𝑡𝑡1) ≈ 𝑝𝑝2(𝑡𝑡1 + ∆𝑡𝑡) (7) 
 𝑝𝑝1(𝑡𝑡1 − ∆𝑡𝑡) = 𝑚𝑚 ∙ �+ 𝐽𝐽

2
∙ ∆𝑡𝑡2 − 𝐴𝐴 ∙ ∆𝑡𝑡 + 𝐴𝐴2

2𝐽𝐽
� (8) 

 𝑝𝑝2(𝑡𝑡1 + ∆𝑡𝑡) = 𝑚𝑚 ∙ �+𝐴𝐴 ∙ ∆𝑡𝑡 + 𝐴𝐴2

2𝐽𝐽
� (9) 

Δpa is the gain of momentum by acceleration, which increases linearly during Δt before t1 and is 
equal to A during Δt after t1: 
 ∆𝑝𝑝𝑎𝑎 = 𝑝𝑝2(𝑡𝑡1 + ∆𝑡𝑡) − 𝑝𝑝1(𝑡𝑡1 − ∆𝑡𝑡) = 𝑚𝑚 ∙ �− 𝐽𝐽

2
∙ ∆𝑡𝑡2 + 2𝐴𝐴 ∙ ∆𝑡𝑡� (10) 
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2.4.3 Gain of momentum at t1 in the continuous trip function 
For the trip function which is derived in this paper, the discontinuity at the transition points of the 
functions j(t) and a(t) is solved by the introduction of the shape factor φ. Like above, the 
momentum before and after t = t1 can be determined from the following three equations (numbered 
as 21, 29 and 35, respectively) in the derivation further below: 
 𝑡𝑡1 = + 𝐴𝐴

𝜑𝜑𝐽𝐽
  

 𝑣𝑣1(𝑡𝑡) = + 𝐽𝐽
4
∙ 𝑡𝑡2 +

��1𝜑𝜑−1�∙𝐴𝐴�
2

2𝜋𝜋2𝐽𝐽
∙ cos �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝐴𝐴𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + �𝐴𝐴 − 𝐴𝐴

2𝜑𝜑
� ∙ 𝑡𝑡 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

4𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
+ 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
− 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
  

 𝑣𝑣2(𝑡𝑡) = +𝐴𝐴 ∙ 𝑡𝑡 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
  

The same procedure as above, but now with application of φ, to determine the gain of momentum 
Δpb, yields: 
 𝑝𝑝1(𝑡𝑡1 − ∆𝑡𝑡) = 𝑚𝑚 ∙ �+ 𝐽𝐽

4
∙ ∆𝑡𝑡2 − 𝐴𝐴 ∙ ∆𝑡𝑡 + � 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
� ∙ cos � −𝜋𝜋𝐽𝐽∙Δ𝑡𝑡

�1𝜑𝜑−1�∙𝐴𝐴
� + 𝐶𝐶11� (11) 

where  𝐶𝐶11 = 𝐴𝐴2

2𝜑𝜑𝐽𝐽
− � 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
�. 

 
 𝑝𝑝2(𝑡𝑡1 + ∆𝑡𝑡) = 𝑚𝑚 ∙ �+𝐴𝐴 ∙ ∆𝑡𝑡 + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
� (12) 

 ∆𝑝𝑝𝑏𝑏 = 𝑚𝑚 ∙ �− 𝐽𝐽
4
∙ ∆𝑡𝑡2 + 2𝐴𝐴 ∙ ∆𝑡𝑡 − � 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
� ∙ cos � −𝜋𝜋𝐽𝐽∙Δ𝑡𝑡

�1𝜑𝜑−1�∙𝐴𝐴
� + � 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
�� (13) 

2.4.4 Comparison of momentum gains 
Both results for the momentum gains Δpa Eq. (10) and Δpb Eq. (13) approach to zero when Δt 
approaches to zero. This suggests that there is no significant difference between the simplified 
model and the continuous solution with φ. This suggestion is confirmed by determining the limit for 
Δt→0 of the quotient of Δpa and Δpb, which then should be equal to 1. This turns out to be the case 
in Eq. (15): 

 lim
Δ𝑡𝑡→0

𝛥𝛥𝑝𝑝𝑎𝑎
𝛥𝛥𝑝𝑝𝑏𝑏

= 0
0
 (14) 

Eq. (14) is an indeterminate form because of a division of zero by zero, which is solved with 
L'Hôpital's rule: 
 lim

x→0

𝑓𝑓(x)
𝑔𝑔(x)

= lim
x→0

𝑓𝑓′(x)
𝑔𝑔′(x)

⇒ lim
Δ𝑡𝑡→0

sin(𝜔𝜔∙Δ𝑡𝑡)
(𝜔𝜔∙Δ𝑡𝑡)

= lim
Δ𝑡𝑡→0

�𝜔𝜔∙cos(𝜔𝜔∙Δ𝑡𝑡)
𝜔𝜔

� = 1 

 𝑔𝑔(Δ𝑡𝑡) = +Θ ∙ cos(𝜔𝜔 ∙ Δ𝑡𝑡) ⇒ 𝑔𝑔′(Δ𝑡𝑡) = −Θ ∙ 𝜔𝜔 ∙ sin(𝜔𝜔 ∙ Δ𝑡𝑡) = −Θ ∙ 𝜔𝜔2 ∙ Δ𝑡𝑡 ∙ sin(𝜔𝜔∙Δ𝑡𝑡)
(𝜔𝜔∙Δ𝑡𝑡)

 

The quotient of the derivatives to Δt of Δpa and Δpb: 

 𝑝𝑝𝑎𝑎′

𝑝𝑝𝑏𝑏
′ = (−𝐽𝐽 ∙ 𝛥𝛥𝑡𝑡 + 2𝐴𝐴)

⎩
⎪
⎨

⎪
⎧

− 𝐽𝐽
2
∙ 𝛥𝛥𝑡𝑡 + 2𝐴𝐴 + � 1

2−4𝜑𝜑+2𝜑𝜑2
− 1

1
𝜑𝜑−2+𝜑𝜑

+ 1
2
𝜑𝜑2

−4𝜑𝜑+2
� ∙ 𝐽𝐽 ∙ 𝛥𝛥𝑡𝑡 ∙

𝑠𝑠𝑠𝑠𝑠𝑠� −𝜋𝜋𝐽𝐽∙𝛥𝛥𝛥𝛥
�1𝜑𝜑−1�∙𝐴𝐴

�

� −𝜋𝜋𝐽𝐽∙𝛥𝛥𝛥𝛥
�1𝜑𝜑−1�∙𝐴𝐴

�
⎭
⎪
⎬

⎪
⎫

�  

 𝜔𝜔 = −𝜋𝜋𝐽𝐽

�1𝜑𝜑−1�∙𝐴𝐴
 

 𝑝𝑝𝑎𝑎′

𝑝𝑝𝑏𝑏
′ = (−𝐽𝐽 ∙ 𝛥𝛥𝑡𝑡 + 2𝐴𝐴) �− 𝐽𝐽

2
∙ 𝛥𝛥𝑡𝑡 + 2𝐴𝐴 + 1

2
∙ 𝐽𝐽 ∙ 𝛥𝛥𝑡𝑡 ∙ sin(𝜔𝜔∙𝛥𝛥𝑡𝑡)

(𝜔𝜔∙𝛥𝛥𝑡𝑡)
��  

 lim
Δ𝑡𝑡→0

𝛥𝛥𝑝𝑝𝑎𝑎
𝛥𝛥𝑝𝑝𝑏𝑏

= lim
Δ𝑡𝑡→0

𝑝𝑝𝑎𝑎′

𝑝𝑝𝑏𝑏
′ = (+2𝐴𝐴)

{+2𝐴𝐴}
= 1 (15) 

The conclusion is that no inaccuracies appear to arise from the discontinuous transitions in j(t) and 
a(t) in the simplified model. 
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2.5 Variables and milestones 
Table 1 Variables and units 

Symbol Kinematic 
case 

Description Unit 

t - Time as independent variable. s 
s(t) - Traveled distance as function from time. m 
v(t) - Speed as function from time. m/s 
a(t) - Acceleration / deceleration as function from time. m/s2 
j(t) - Jerk as function from time. m/s3 
V - Rated speed. m/s 

vmax.XX - The maximum speed which is reached in case XX (see index TXX below). So is 
vmax.T = V. m/s 

A - Maximum acceleration / deceleration. m/s2 
J - Maximum jerk. m/s3 

φ - Shape factor for duration of maintaining jerk at level J relative to duration of 
acceleration and deceleration. -/- 

S(TXX) - Total traveled distance for a ride as function from the total duration from that 
ride under the conditions for the total flight time TXX given below: m 

TXX - Total flight time is the time, which elapses between the actual start and stop of 
the movement of the car. s 

TT T Total flight time when the rated speed V is reached and continued for some 
time (ride over longer distance). s 

TV V Total flight time when the rated speed V is reached, and then immediately 
followed by deceleration to stop. s 

TAV AV Total flight time when the maximum acceleration A is reached, but not 
continued long enough to reach rated speed V. s 

TA A Total flight time when the maximum acceleration A is reached, and then 
immediately followed by deceleration to stop. s 

Tn n Total flight time for a very short trip where the maximum acceleration A is 
reached no more. s 

 
Table 2 Milestones tn in the trip function 

Moment Number 
equation 

Time (milestones) Phase 

Start at t = t0 (-) 𝑡𝑡0 = 0 1 

Value +J for jerk is reached at t = ta (01), (22) 𝑡𝑡𝑎𝑎 = +(1 − 𝜑𝜑) ∙ 𝑡𝑡1 = +
𝐴𝐴
𝜑𝜑𝐽𝐽

−
𝐴𝐴
𝐽𝐽

 1 

Value +J for jerk is continued until t = tb (02), (23) 𝑡𝑡𝑏𝑏 = +𝜑𝜑 ∙ 𝑡𝑡1 = +
𝐴𝐴
𝐽𝐽

 1 

Value +A for acceleration is reached at t = t1 (21) 𝑡𝑡1 = +
𝐴𝐴
𝜑𝜑𝐽𝐽

 1 - 2 

Value +A for acceleration is continued until t = t2 (38) 𝑡𝑡2 =
𝑉𝑉
𝐴𝐴

 2 - 3 

Value –J for jerk is reached at t = tc (43) 𝑡𝑡𝑐𝑐 = 𝑡𝑡2 + 𝑡𝑡𝑎𝑎 = +
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝜑𝜑𝐽𝐽

−
𝐴𝐴
𝐽𝐽

 3 

Value –J for jerk is continued until t = td (44) 𝑡𝑡𝑑𝑑 = 𝑡𝑡2 + 𝑡𝑡𝑏𝑏 = +
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝐽𝐽

 3 

Value V for speed is reached at t = t3 (42) 𝑡𝑡3 = +
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝜑𝜑𝐽𝐽

 3 - 4 

Value V for speed is continued until t = t4 (-) 𝑡𝑡4 = 𝑇𝑇𝑇𝑇 − 𝑡𝑡3 = 𝑇𝑇𝑇𝑇 −
𝑉𝑉
𝐴𝐴
−
𝐴𝐴
𝜑𝜑𝐽𝐽

 4 
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2.6 Equations derived from the trip function with φ = 0.95 in the 5 kinematic cases T to n 
There are 5 typical kinematic cases for the trip function; T, V, AV, A and n: 

T. The total flight time over a distance S(TT) between start and stop, where the rated speed V is 
reached and continued for some time is: 𝑻𝑻𝑻𝑻 = + 𝑺𝑺(𝑻𝑻𝑻𝑻)

𝑽𝑽
+ 𝑽𝑽

𝑨𝑨
+ 𝟏𝟏.𝟎𝟎𝟓𝟓 × 𝑨𝑨

𝑱𝑱
; Eq. (59). 

V. The total traveled distance of a ride where between start and stop the rated speed just is 
reached, and then immediately followed by deceleration, is: 𝑺𝑺(𝑻𝑻𝑽𝑽) = + 𝑽𝑽𝟐𝟐

𝑨𝑨
+ 𝟏𝟏.𝟎𝟎𝟓𝟓 × 𝑨𝑨𝑽𝑽

𝑱𝑱
; Eq. 

(60); the total duration is: 𝑻𝑻𝑽𝑽 = + 𝟐𝟐𝑽𝑽
𝑨𝑨

+ 𝟐𝟐.𝟏𝟏 × 𝑨𝑨
𝑱𝑱

= + 𝟐𝟐∙𝑺𝑺(𝑻𝑻𝑽𝑽)
𝑽𝑽

; Eq. (61); and the maximum reached 
speed is: 𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎.𝑽𝑽 = +𝑽𝑽 (of course). 

AV. The total flight time over a distance S(TAV) where between start and stop the maximum 
acceleration A is reached, but not continued long enough to reach rated speed V is: 
𝑻𝑻𝑨𝑨𝑽𝑽 = +𝟏𝟏.𝟎𝟎𝟓𝟓 ∙ 𝑨𝑨

𝑱𝑱
+ �+𝟏𝟏.𝟓𝟓𝟒𝟒 × 𝑨𝑨𝟐𝟐

𝑱𝑱𝟐𝟐
+ 𝟒𝟒

𝑨𝑨
× 𝑺𝑺(𝑻𝑻𝑨𝑨𝑽𝑽); Eq. (87); and the maximum achieved speed is: 

𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎.𝑨𝑨𝑽𝑽 = −𝟎𝟎.𝟓𝟓𝟕𝟕 × 𝑨𝑨𝟐𝟐

𝑱𝑱
+ �+𝟎𝟎.𝟑𝟑𝟑𝟑 × 𝑨𝑨𝟒𝟒

𝑱𝑱𝟐𝟐
+ 𝑨𝑨 × 𝑺𝑺(𝑻𝑻𝑨𝑨𝑽𝑽); Eq. (89). 

A. The total traveled distance of a ride where between start and stop the maximum acceleration 
A just is reached, and then immediately followed by deceleration is: 
𝑺𝑺(𝑻𝑻𝑨𝑨) = +𝟒𝟒.𝟎𝟎𝟏𝟏 × 𝑨𝑨𝟑𝟑

𝑱𝑱𝟐𝟐
; Eq. (73); the total duration is: 𝑻𝑻𝑨𝑨 = +𝟓𝟓.𝟐𝟐𝟓𝟓 × 𝑨𝑨

𝑱𝑱
; Eq. (68); and the 

maximum achieved speed is: 𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎.𝑨𝑨 = +𝟏𝟏.𝟓𝟓𝟑𝟑 × 𝑨𝑨𝟐𝟐

𝑱𝑱
; Eq. (70). 

n. The total traveled distance of a (very) short ride where between start and stop the maximum 
acceleration A and therefore the rated speed V too, are reached no more is: 
𝑻𝑻𝒏𝒏 = +𝟏𝟏.𝟑𝟑𝟏𝟏 × 𝑱𝑱

𝑨𝑨𝟐𝟐
.𝑺𝑺(𝑻𝑻𝒏𝒏); Eq. (94); and the maximum achieved speed is: 

𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎.𝒏𝒏 = +𝟎𝟎.𝟑𝟑𝟑𝟑 × 𝑱𝑱
𝑨𝑨
∙ 𝑺𝑺(𝑻𝑻𝒏𝒏); Eq. (96). 

2.7 Mathematical derivation of the trip function; principle 
This paper deals with the principle of the derivation of the trip function and its results. The calculus 
behind it is omitted as much as possible, except for the initial equations for jerk j(t) to start the 
integration sequence, the relevant values referred to as ‘milestones’ and the resulting equations that 
directly refer to their counterparts in [2] and [3]. The trip function is segmented into 7 phases as 
given before. In each phase, the integration of the jerk j(t) [m/s3], acceleration a(t) [m/s2] and speed 
v(t) [m/s] to the traveled distance s(t) [m] is successively carried out as follows: 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 (𝒏𝒏): 𝒕𝒕𝒏𝒏−𝟏𝟏 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒏𝒏 

In each successive phase (n) the trip function has different characteristics, starting with the 
applicable function for jerk. The integration process for phase 1 starts at t = t0 = 0 s and all values 
j(t0), a(t0), v(t0) and s(t0) are also equal to 0. The next step for phase 2 starts at t = t1, and so on. 

As stated before: s(t)=ƒ(t,J,A,V,φ). 
The functions for speed, acceleration and jerk are the successive derivatives with respect to time of 
the traveled distance s(t): 

𝑣𝑣(𝑡𝑡) = 𝑑𝑑𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑑𝑑𝑓𝑓(𝑡𝑡,𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑)
𝑑𝑑𝑡𝑡

= 𝑓𝑓′(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑); 
𝑎𝑎(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑑𝑑2𝑓𝑓(𝑡𝑡,𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑)

𝑑𝑑𝑡𝑡2
= 𝑓𝑓′′(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑); 

𝑗𝑗(𝑡𝑡) = 𝑑𝑑𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑑𝑑3𝑓𝑓(𝑡𝑡,𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑)
𝑑𝑑𝑡𝑡3

= 𝑓𝑓′′′(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑). 

The other way round the primitive functions are: 
𝑎𝑎(𝑡𝑡) = ∫ 𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝐹𝐹′′(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑) + 𝐶𝐶𝑠𝑠′′; 
𝑣𝑣(𝑡𝑡) = ∫𝑎𝑎(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝐹𝐹′(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑) + 𝐶𝐶𝑠𝑠′; 
𝑠𝑠(𝑡𝑡) = ∫ 𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝐹𝐹(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑) + 𝐶𝐶𝑠𝑠. 
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The ‘unknown’ integration constant values 𝐶𝐶𝑠𝑠, 𝐶𝐶𝑠𝑠′ and 𝐶𝐶𝑠𝑠′′ have to be step by step determined. This is 
done by substituting the results of the prior integrated equations from the preceding phase (n-1) into 
the obtained primitive functions Fn for the current phase (n). For example, the value of 𝐶𝐶𝑠𝑠′′ is 
determined by using the primitive function 𝐹𝐹𝑠𝑠′′(𝑡𝑡) for acceleration 𝑎𝑎𝑠𝑠(𝑡𝑡) in phase (n), which is 
obtained by integration of 𝑗𝑗𝑠𝑠(𝑡𝑡): 
 𝑎𝑎𝑠𝑠(𝑡𝑡) = ∫ 𝑗𝑗𝑠𝑠(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝐹𝐹𝑠𝑠′′(𝑡𝑡, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑) + 𝐶𝐶𝑠𝑠′′. 

At the moment of transition t = tn-1 from the previous phase (n-1) to the current phase (n), the initial 
value an(tn-1) of the acceleration function in the current phase is, because of continuity, equal to the 
final value an-1(tn-1) of the acceleration function which applied to the previous phase: 
 𝑎𝑎𝑠𝑠(𝑡𝑡𝑠𝑠−1) = 𝑎𝑎𝑠𝑠−1(𝑡𝑡𝑠𝑠−1); 
 𝐹𝐹𝑠𝑠′′(𝑡𝑡𝑠𝑠−1, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑) + 𝐶𝐶𝑠𝑠′′ = 𝑎𝑎𝑠𝑠−1(𝑡𝑡𝑠𝑠−1). 

The, until then unknown, integration constant value 𝐶𝐶𝑠𝑠′′ is now determined by subtraction of the 
primitive function 𝐹𝐹𝑠𝑠′′ from 𝑎𝑎𝑠𝑠−1(𝑡𝑡𝑠𝑠−1): 
 𝐶𝐶𝑠𝑠′′ = 𝑎𝑎𝑠𝑠−1(𝑡𝑡𝑠𝑠−1) − 𝐹𝐹𝑠𝑠′′(𝑡𝑡𝑠𝑠−1, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑). 

The final value of the acceleration function in the current phase at the moment of transition to the 
next phase t = tn is determined by adding the found value of 𝐶𝐶𝑠𝑠′′ to the already obtained primitive 
function of tn: 
 𝑎𝑎𝑠𝑠(𝑡𝑡𝑠𝑠) = 𝐹𝐹𝑠𝑠′′(𝑡𝑡𝑠𝑠, 𝐽𝐽,𝐴𝐴,𝑉𝑉,𝜑𝜑) + 𝐶𝐶𝑠𝑠′′. 

This result is to be applied again as the initial value for the next phase (n+1), and so on. 
Unfortunately, because the determination of the integration constant values is necessary for 
proceeding to the next phase every time, the method of definite integration is unsuitable for the total 
solution all the way. The followed method of indefinite integration is rather elaborate. For example, 
it takes 20 steps of integration with increasing complicated equations to solve the trip function for a 
full ride where the rated speed V is reached and continued for some time. 

2.8 Mathematical derivation of the trip function; step by step 

 
 

Figure 3 Overview of integration steps from jerk through acceleration and speed to distance 
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𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟏𝟏: 𝟎𝟎 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 

Start at t0 and run-up until t1 to maximum acceleration A. 

Jerk j(t) [m/s3] 

The integration sequence for phase 1 starts with these 3 basic initial functions j(t): 

𝟎𝟎 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒎𝒎 
 𝑗𝑗(𝑡𝑡) = + 𝐽𝐽

2
− 𝐽𝐽

2
∙ cos �𝜋𝜋∙𝑡𝑡

𝑡𝑡𝑎𝑎
� (16) 

𝒕𝒕𝒎𝒎 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒃𝒃 
 𝑗𝑗(𝑡𝑡) = +𝐽𝐽 (17) 

𝒕𝒕𝒃𝒃 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 
 𝑗𝑗(𝑡𝑡) =  + 𝐽𝐽

2
− 𝐽𝐽

2
∙ cos �𝜋𝜋∙(𝑡𝑡−𝑡𝑡𝑏𝑏)

(𝑡𝑡1−𝑡𝑡𝑏𝑏)
+ 𝜋𝜋� (18) 

Acceleration a(t) [m/s2] 

The first milestone after integration of these 3 functions j(t) to a(t) in 3 steps  
(1: 0 ≤ t ≤ ta; 2: ta ≤ t ≤ tb and 3: tb ≤ t ≤ t1) from t0 to t1, is reaching the full acceleration A at t1: 

𝒕𝒕𝒃𝒃 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 
 𝑎𝑎(𝑡𝑡) = + 𝐽𝐽

2
∙ 𝑡𝑡 − 𝐽𝐽∙(𝑡𝑡1−𝑡𝑡𝑏𝑏)

2𝜋𝜋
∙ sin �𝜋𝜋∙(𝑡𝑡−𝑡𝑡𝑏𝑏)

(𝑡𝑡1−𝑡𝑡𝑏𝑏)
+ 𝜋𝜋� − 𝐽𝐽∙𝑡𝑡𝑎𝑎

2
+ 𝐽𝐽∙𝑡𝑡𝑏𝑏

2
 (19) 

 𝑎𝑎(𝑡𝑡1) = + 𝐽𝐽∙𝑡𝑡1
2
− 𝐽𝐽∙𝑡𝑡𝑎𝑎

2
+ 𝐽𝐽∙𝑡𝑡𝑏𝑏

2
= 𝐴𝐴 

 𝑎𝑎(𝑡𝑡1) = + 𝐽𝐽∙𝑡𝑡1
2
− 𝐽𝐽∙(1−𝜑𝜑)∙𝑡𝑡1

2
+ 𝐽𝐽𝜑𝜑∙𝑡𝑡1

2
= +𝜑𝜑𝐽𝐽 ∙ 𝑡𝑡1 = 𝐴𝐴 (20) 

This leads to determination of t1, ta and tb: 

 𝑡𝑡1 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

 (As already noted in Fig. 2). (21) 

 𝑡𝑡1 = + 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.3) 

Substitution of t1 Eq. (21) into Eq. (1), (2) and (3) yields: 
 𝑡𝑡𝑎𝑎 = + 𝐴𝐴

𝜑𝜑𝐽𝐽
− 𝐴𝐴

𝐽𝐽
 (22) 

 𝑡𝑡𝑏𝑏 = + 𝐴𝐴
𝐽𝐽
 (23) 

Substitution of t1, ta and tb into Eq. (16) to Eq. (19) yields, except for Eq. (17), the new ‘real’ initial 
functions j(t) and a(t) (now based on time t, without ta and tb) to continue the integration to speed 
v(t): 

𝟎𝟎 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒎𝒎 

 𝑗𝑗(𝑡𝑡) = + 𝐽𝐽
2
− 𝐽𝐽

2
∙ cos � 𝜋𝜋𝐽𝐽∙𝑡𝑡

�1𝜑𝜑−1�∙𝐴𝐴
� (24) 

 𝑎𝑎(𝑡𝑡) = + 𝐽𝐽
2
∙ 𝑡𝑡 −

�1𝜑𝜑−1�∙𝐴𝐴

2𝜋𝜋
∙ sin � 𝜋𝜋𝐽𝐽∙𝑡𝑡

�1𝜑𝜑−1�∙𝐴𝐴
� (25) 

𝒕𝒕𝒎𝒎 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒃𝒃 
 𝐽𝐽(𝑡𝑡) = +𝐽𝐽 (17) 

 𝑎𝑎(𝑡𝑡) = +𝐽𝐽 ∙ 𝑡𝑡 − 𝐴𝐴
2𝜑𝜑

+ 𝐴𝐴
2
 (26) 
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𝒕𝒕𝒃𝒃 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 

 𝑗𝑗(𝑡𝑡) =  + 𝐽𝐽
2
− 𝐽𝐽

2
∙ cos �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝐴𝐴𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� (27) 

 𝑎𝑎(𝑡𝑡) = + 𝐽𝐽
2
∙ 𝑡𝑡 −

�1𝜑𝜑−1�∙𝐴𝐴

2𝜋𝜋
∙ sin �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝐴𝐴𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + 𝐴𝐴 − 𝐴𝐴

2𝜑𝜑
 (28) 

Speed v(t) [m/s] 

Successive integration of a(t) Eq. (25), (26) and (28) in 3 steps from t0 to t1, results ultimately in: 

𝒕𝒕𝒃𝒃 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 

 𝑣𝑣(𝑡𝑡) = + 𝐽𝐽
4
∙ 𝑡𝑡2 +

��1𝜑𝜑−1�∙𝐴𝐴�
2

2𝜋𝜋2𝐽𝐽
∙ cos �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝐴𝐴𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + �𝐴𝐴 − 𝐴𝐴

2𝜑𝜑
� ∙ 𝑡𝑡 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

4𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
+ 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
− 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
 (29) 

The speed at the moment t = t1 of reaching acceleration A is determined by substitution of t1 Eq. 
(21) into Eq. (29): 

 𝑣𝑣(𝑡𝑡1) = + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (30) 

 𝑣𝑣(𝑡𝑡1) = + 𝐴𝐴2

2𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.4) 

Distance s(t) [m] 

Integration of v(t) in 3 steps from t0 to t1, of which integration of Eq. (29) is the last, results in: 

𝒕𝒕𝒃𝒃 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟏𝟏 

 𝑠𝑠(𝑡𝑡) = + 𝐽𝐽
12
∙ 𝑡𝑡3 +

��1𝜑𝜑−1�∙𝐴𝐴�
3

2𝜋𝜋3𝐽𝐽2
∙ sin �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝐴𝐴𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + �𝐴𝐴

2
− 𝐴𝐴

4𝜑𝜑
� ∙ 𝑡𝑡2 + 𝐶𝐶31−1 ∙ 𝑡𝑡 + 𝐶𝐶31−2 (31) 

where 
  𝐶𝐶31−1 = − 𝐴𝐴2

2𝜑𝜑𝐽𝐽 + 𝐴𝐴2

4𝜑𝜑2𝐽𝐽 −
𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽 + 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽 −
𝐴𝐴2

2𝜋𝜋2𝐽𝐽 , 

 𝐶𝐶31−2 = 𝐴𝐴3

6𝐽𝐽2
− 𝐴𝐴3

4𝜑𝜑𝐽𝐽2
+ 𝐴𝐴3

4𝜑𝜑2𝐽𝐽2
− 2𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 5𝐴𝐴3

2𝜋𝜋2𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝐽𝐽2
− 𝐴𝐴3

12𝜑𝜑3𝐽𝐽2
+ 𝐴𝐴3

2𝜋𝜋2𝜑𝜑3𝐽𝐽2
 . 

The traveled distance at the moment t = t1 is determined  

 𝑠𝑠(𝑡𝑡1) = + 𝐴𝐴3

𝐽𝐽2
∙ �+ 1

4𝜑𝜑2
− 1

𝜋𝜋2𝜑𝜑2
+ 2

𝜋𝜋2𝜑𝜑
+ 1

6
− 1

4𝜑𝜑
− 1

𝜋𝜋2
� (32) 

 𝑠𝑠(𝑡𝑡1) = + 𝐴𝐴3

6𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.2) 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟐𝟐: 𝒕𝒕𝟏𝟏 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟐𝟐 

Maximum acceleration A is reached at t1 and continued to t2. 

 𝑗𝑗(𝑡𝑡) = 0 (33) 
 𝑎𝑎(𝑡𝑡) = 𝐴𝐴 (34) 
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Speed v(t) [m/s] 

Integration of a(t) Eq. (34) from t = t1 to t2 with substitution of t1 Eq. (21) and v(t1) Eq. (30) into its 
solution, yields: 

 𝑣𝑣(𝑡𝑡) = +𝐴𝐴 ∙ 𝑡𝑡 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (35) 

 𝑣𝑣(𝑡𝑡2) = +𝐴𝐴 ∙ 𝑡𝑡2 −
𝐴𝐴2

2𝜑𝜑𝐽𝐽
 

 𝑣𝑣(𝑡𝑡) = +𝐴𝐴 ∙ 𝑡𝑡 − 𝐴𝐴2

2𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (6.19) 

The next milestone is reaching the rated speed V at t3: 

 𝑣𝑣(𝑡𝑡3) = +𝑣𝑣(𝑡𝑡1) + 𝑣𝑣(𝑡𝑡2) = 𝑉𝑉 (36) 
 𝑉𝑉 = + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴 ∙ 𝑡𝑡2 −

𝐴𝐴2

2𝜑𝜑𝐽𝐽
= +𝐴𝐴 ∙ 𝑡𝑡2 (37) 

 ⇒ 𝑡𝑡2 = 𝑉𝑉
𝐴𝐴
 (38) 

 𝑣𝑣(𝑡𝑡2) = +𝑉𝑉 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (39) 

Distance s(t) [m] 

Integration of v(t) Eq. (35) from t = t1 to t2 with substitution of t1 Eq. (21) and s(t1) Eq. (32) into its 
solution, yields: 

 𝑠𝑠(𝑡𝑡) = + 𝐴𝐴
2
∙ 𝑡𝑡2 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
∙ 𝑡𝑡 + 𝐴𝐴3

4𝜑𝜑2𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 2𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
+ 𝐴𝐴3

6𝐽𝐽2
− 𝐴𝐴3

4𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝐽𝐽2
 (40) 

The traveled distance at the moment of stopping the full acceleration A at t = t2 is determined by 
substitution of t2 Eq. (38) into Eq. (40): 

 𝑠𝑠(𝑡𝑡2) = + 𝑉𝑉2

2𝐴𝐴
− 𝐴𝐴𝑉𝑉

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴3

4𝜑𝜑2𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 2𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
+ 𝐴𝐴3

6𝐽𝐽2
− 𝐴𝐴3

4𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝐽𝐽2
 (41) 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟑𝟑: 𝒕𝒕𝟐𝟐 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟑𝟑 

Reduction of acceleration to 0 m/s2 from t2 until at t3 rated speed V is reached. 

The milestones t3, tc and td can be derived now from the already known ones: 
 𝑡𝑡1 = + 𝐴𝐴

𝜑𝜑𝐽𝐽
 (21) 

 𝑡𝑡𝑎𝑎 = + 𝐴𝐴
𝜑𝜑𝐽𝐽
− 𝐴𝐴

𝐽𝐽
 (22) 

 𝑡𝑡𝑏𝑏 = + 𝐴𝐴
𝐽𝐽
 (23) 

 𝑡𝑡2 = + 𝑉𝑉
𝐴𝐴
 (38) 

 𝑡𝑡3 = 𝑡𝑡1 + 𝑡𝑡2 ⇒ 𝑡𝑡3 = + 𝑉𝑉
𝐴𝐴

+ 𝐴𝐴
𝜑𝜑𝐽𝐽

 (42) 

 𝑡𝑡3 = + 𝑉𝑉
𝐴𝐴

+ 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.6) 

 𝑡𝑡𝑐𝑐 = 𝑡𝑡2 + 𝑡𝑡𝑎𝑎 ⇒ 𝑡𝑡𝑐𝑐 = + 𝑉𝑉
𝐴𝐴

+ 𝐴𝐴
𝜑𝜑𝐽𝐽
− 𝐴𝐴

𝐽𝐽
 (43) 

 𝑡𝑡𝑑𝑑 = 𝑡𝑡2 + 𝑡𝑡𝑏𝑏 ⇒ 𝑡𝑡𝑑𝑑 = + 𝑉𝑉
𝐴𝐴

+ 𝐴𝐴
𝐽𝐽
 (44) 
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Jerk j(t) [m/s3] 

Similar to phase 1 the integration sequence for phase 3 starts with these 3 ‘real’ initial equations j(t) 
after eliminating tc and td by substitution of Eq. (43) and (44) into the 3 basic equations: 

𝒕𝒕𝟐𝟐 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒄𝒄 

 𝑗𝑗(𝑡𝑡) = − 𝐽𝐽
2

+ 𝐽𝐽
2
∙ cos �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝑉𝑉𝐴𝐴�

�1𝜑𝜑−1�∙𝐴𝐴
� (45) 

𝒕𝒕𝒄𝒄 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝒅𝒅 
 𝐽𝐽(𝑡𝑡) = −𝐽𝐽 (46) 

𝒕𝒕𝒅𝒅 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟑𝟑 

 𝑗𝑗(𝑡𝑡) =  − 𝐽𝐽
2

+ 𝐽𝐽
2
∙ cos �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝑉𝑉𝐴𝐴−
𝐴𝐴
𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� (47) 

Acceleration a(t) [m/s2] 

The next milestone after integration of these 3 functions j(t) to a(t) in 3 steps (1: t2 ≤ t ≤ tc;  
2: tc ≤ t ≤ td and 3: td ≤ t ≤ t3) from t = t2 to t3, is reaching the rated speed V at t3. 

At t3 there is no acceleration anymore: a(t3) = 0 m/s2 

𝒕𝒕𝒅𝒅 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟑𝟑 

 𝑎𝑎(𝑡𝑡) = ∫ 𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡 = − 𝐽𝐽
2
∙ 𝑡𝑡 +

�1𝜑𝜑−1�∙𝐴𝐴

2𝜋𝜋
∙ sin �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝑉𝑉𝐴𝐴−
𝐴𝐴
𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + 𝐴𝐴

2𝜑𝜑
+ 𝐽𝐽𝑉𝑉

2𝐴𝐴
 (48) 

This is confirmed by substitution of t3 Eq. (42) into Eq. (48): 

 𝑎𝑎(𝑡𝑡3) = − 𝐽𝐽𝑉𝑉
2𝐴𝐴
− 𝐴𝐴

2𝜑𝜑
+ 𝐴𝐴

2𝜑𝜑
+ 𝐽𝐽𝑉𝑉

2𝐴𝐴
= 0 𝑚𝑚/𝑠𝑠2 (49) 

Speed v(t) [m/s] 

Integration of a(t) in 3 steps from t = t2 to t3, of which integration of Eq. (48) is the last, results in: 

𝒕𝒕𝒅𝒅 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟑𝟑 

 𝑣𝑣(𝑡𝑡) = − 𝐽𝐽
4
𝑡𝑡2 −

��1𝜑𝜑−1�∙𝐴𝐴�
2

2𝜋𝜋2𝐽𝐽
∙ cos �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝑉𝑉𝐴𝐴−
𝐴𝐴
𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + � 𝐴𝐴

2𝜑𝜑
+ 𝐽𝐽𝑉𝑉

2𝐴𝐴
� ∙ 𝑡𝑡 + 𝐶𝐶50 (50) 

where 𝐶𝐶50 = +𝑉𝑉 − 𝐴𝐴2

4𝜑𝜑2𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
− 𝐽𝐽𝑉𝑉2

4𝐴𝐴2
− 𝑉𝑉

2𝜑𝜑
. 

Repeated substitution of t3 Eq. (42) into Eq. (50) leads to the desired solution: 

 𝑣𝑣(𝑡𝑡3) = 𝑉𝑉 (51) 
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Distance s(t) [m] 

Integration of v(t) in 3 steps from t = t2 to t3, of which integration of Eq. (50) is the last, yields: 

𝒕𝒕𝒅𝒅 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟑𝟑 

 𝑠𝑠(𝑡𝑡) = − 𝐽𝐽
12
∙ 𝑡𝑡3 −

��1𝜑𝜑−1�∙𝐴𝐴�
3

2𝜋𝜋3𝐽𝐽2
∙ sin �

𝜋𝜋𝐽𝐽∙�𝑡𝑡−𝑉𝑉𝐴𝐴−
𝐴𝐴
𝐽𝐽�

�1𝜑𝜑−1�∙𝐴𝐴
+ 𝜋𝜋� + � 𝐴𝐴

4𝜑𝜑
+ 𝐽𝐽𝑉𝑉

4𝐴𝐴
� ∙ 𝑡𝑡2 + 𝐶𝐶52−1 ∙ 𝑡𝑡 + 𝐶𝐶52−2 (52) 

where 
 𝐶𝐶52−1 = 𝑉𝑉 − 𝐴𝐴2

4𝜑𝜑2𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝜑𝜑2𝐽𝐽
− 𝐴𝐴2

𝜋𝜋2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

2𝜋𝜋2𝐽𝐽
− 𝐽𝐽𝑉𝑉2

4𝐴𝐴2
− 𝑉𝑉

2𝜑𝜑
 , 

 𝐶𝐶52−2 = −𝑉𝑉2

2𝐴𝐴
− 𝐴𝐴𝑉𝑉

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
− 𝐴𝐴3

2𝜋𝜋2𝜑𝜑𝐽𝐽2
+ 𝐴𝐴3

12𝜑𝜑3𝐽𝐽2
− 𝐴𝐴3

2𝜋𝜋2𝜑𝜑3𝐽𝐽2
+ 𝐽𝐽𝑉𝑉3

12𝐴𝐴3
+ 𝑉𝑉2

4𝜑𝜑𝐴𝐴
+ 𝐴𝐴𝑉𝑉

4𝜑𝜑2𝐽𝐽
− 𝐴𝐴𝑉𝑉

2𝜋𝜋2𝜑𝜑2𝐽𝐽
+ 𝐴𝐴𝑉𝑉

𝜋𝜋2𝜑𝜑𝐽𝐽
− 𝐴𝐴𝑉𝑉

2𝜋𝜋2𝐽𝐽
 . 

The traveled distance at the moment t = t3 Eq. (42) of reaching rated speed V: 

 𝑠𝑠(𝑡𝑡3) = + 𝑉𝑉2

2𝐴𝐴
+ 𝐴𝐴𝑉𝑉

2𝜑𝜑𝐽𝐽
 (53) 

 𝑠𝑠(𝑡𝑡3) = + 𝑉𝑉2

2𝐴𝐴
+ 𝐴𝐴𝑉𝑉

2𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.5) 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟒𝟒: 𝒕𝒕𝟑𝟑 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟒𝟒 

Riding at rated (continuous) speed V from t3 to t4. 

 𝑗𝑗(𝑡𝑡) = 0 (54) 
 𝑎𝑎(𝑡𝑡) = 0 (55) 
 𝑣𝑣(𝑡𝑡) = 𝑉𝑉 (56) 

Distance s(t) [m] 

Integration of v(t) Eq. (56) from t = t3 to t4 with substitution of t3 Eq. (42) and s(t3) Eq. (53) into its 
solution, yields: 

 𝑠𝑠(𝑡𝑡) = 𝑉𝑉 ∙ 𝑡𝑡 − 𝑉𝑉2

2𝐴𝐴
− 𝐴𝐴𝑉𝑉

2𝜑𝜑𝐽𝐽
 (57) 

2.9 Kinematic cases, typical traveled distances and flight times 

2.9.1 Kinematic case T; S(TXX) = S(TT ); S(TT) > S(TV) 
S(TT) is the total traveled distance in the total flight time TT of the trip when rated speed V is 
reached and continued for some time, including start and stop. Slowing down and stopping are 
inversed equal to starting and running up. The constant backlog �− 𝑉𝑉2

2𝐴𝐴
− 𝐴𝐴𝑉𝑉

2𝜑𝜑𝐽𝐽
� of Eq. (57) behind the 

product of rated speed and time V∙t is caused by starting and running up. Fig. 1 shows that the 
traveled distance function is point symmetric at the intersection with the red line at t = ½∙TT. For the 
entire trip the backlog is, because of this symmetry, doubled by slowing down and stop: 

 𝑆𝑆(𝑇𝑇𝑇𝑇) = 𝑉𝑉 ∙ 𝑇𝑇𝑇𝑇 −
𝑉𝑉2

𝐴𝐴
− 𝐴𝐴𝑉𝑉

𝜑𝜑𝐽𝐽
 (58) 

S(TT) is any greater distance as S(TV), see section 2.9.2. The total duration TT of a ride over a 
distance S(TT) between start and stop is: 

 𝑇𝑇𝑇𝑇 = 𝑆𝑆(𝑇𝑇𝑇𝑇)
𝑉𝑉

+ 𝑉𝑉
𝐴𝐴

+ 𝐴𝐴
𝜑𝜑𝐽𝐽

 (59) 

 𝑇𝑇𝑇𝑇 = 𝑆𝑆(𝑇𝑇𝑇𝑇)
𝑉𝑉

+ 𝑉𝑉
𝐴𝐴

+ 1.05 × 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

 𝑇𝑇𝑇𝑇 = 𝑆𝑆(𝑇𝑇𝑇𝑇)
𝑉𝑉

+ 𝑉𝑉
𝐴𝐴

+ 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (A2.8) 
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2.9.2 Kinematic case V; S(TXX) = S(TV) 
For reaching rated speed V at t3, followed immediately by deceleration, the minimum length of the 
trip is equal to S(TV). The phase 4 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑡𝑡4 (continued rated speed) is skipped (𝑡𝑡4 − 𝑡𝑡3 = 0). The 
maximum acceleration A is reached and is continued just long enough to reach rated speed V. 
Before reaching V it decreases again to 0 m/s2 (when V is reached) and successively it decreases 
further to the maximum deceleration –A and finally increases again to 0 m/s2 at the end of the ride. 

 𝑠𝑠(𝑡𝑡3) = + 𝑉𝑉2

2𝐴𝐴
+ 𝐴𝐴𝑉𝑉

2𝜑𝜑𝐽𝐽
 (53) 

 𝑆𝑆(𝑇𝑇𝑉𝑉) = 2 ∙ 𝑠𝑠(𝑡𝑡3) = + 𝑉𝑉2

𝐴𝐴
+ 𝐴𝐴𝑉𝑉

𝜑𝜑𝐽𝐽
= +𝜑𝜑𝐽𝐽𝑉𝑉2+𝐴𝐴2𝑉𝑉

𝜑𝜑𝐽𝐽𝐴𝐴
 (60) 

 𝑆𝑆(𝑇𝑇𝑉𝑉) = + 𝑉𝑉2

𝐴𝐴
+ 1.05 × 𝐴𝐴𝑉𝑉

𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

 𝑆𝑆(𝑇𝑇𝑉𝑉) = +𝐽𝐽𝑉𝑉2+𝐴𝐴2𝑉𝑉
𝐽𝐽𝐴𝐴

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (6.49) 

Total duration TV of a ride between start and stop: 

 𝑇𝑇𝑉𝑉 = 2 ∙ 𝑡𝑡3 = + 2𝑉𝑉
𝐴𝐴

+ 2𝐴𝐴
𝜑𝜑𝐽𝐽

= + 2∙𝑆𝑆(𝑇𝑇𝑉𝑉)
𝑉𝑉

 (61) 

 𝑇𝑇𝑉𝑉 = + 2𝑉𝑉
𝐴𝐴

+ 2.1 × 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

  

Figure 4 Acceleration a(t) and speed v(t) in kinematic cases V (left) and A (right) 
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Table 3 Traveled distances S(TV) for φ = 0.95 and φ = 1  

Eq. (60) Min. 
distance S(TV) [m] 

Speed V [m/s] Speed V [m/s] 

1.0 1.5 2.5 4.0 6.0 1.0 1.5 2.5 4.0 6.0 

Jerk J [m/s3]; φ = 0.95 Jerk J [m/s3]; φ = 1 

1.0 1.1 1.2 1.35 1.5 1.0 1.1 1.2 1.35 1.5 

Acceleration 
A [m/s2] 

0.6 2.3 4.6 11.7 28.5 62.5 2.3 4.6 11.7 28.4 62.4 

0.8 2.1 4.0 9.6 22.5 48.4 2.1 3.9 9.5 22.4 48.2 

1.0 2.1 3.7 8.4 19.1 40.2 2.0 3.6 8.3 19.0 40.0 

1.2 2.1 3.6 7.8 17.1 35.1 2.0 3.5 7.7 16.9 34.8 
Red = traveled distance S(TV) is smaller than 1 average floor distance (3.5 m) in office buildings. Rated speed V is 
reached and continued briefly thereafter, so that therefore the value S(TT) Eq. (58) will apply. 
Blue = unusual combination of A and J. 

2.9.3 Kinematic case A; S(TXX) = S(TA) 
To reach the maximum acceleration A at t1, followed immediately by a decrease in the acceleration 
to the maximum deceleration -A, the length of the trip is equal to S(TA). Due to the direct reduction 
of acceleration A, the rated speed V is reached no more. The maximum speed achieved vmax.A 
depends on S(TA). Phase 1 is the same as for a “full ride” S(TT) and phase 2 lasts 0 s by coincidence 
of t1 and t2. 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟐𝟐: 𝒕𝒕 = 𝒕𝒕𝟏𝟏 = 𝒕𝒕𝟐𝟐 

For this phase the equations are already determined before: Eq. (33) for jerk, Eq. (34) for 
acceleration, Eq. (30) for speed and Eq. (32) for distance. 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟑𝟑 𝒕𝒕𝒕𝒕 𝟔𝟔: 𝒕𝒕𝟐𝟐 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟔𝟔 

Reduction of acceleration from +A at t2 = t1 straight on to maximum deceleration -A at t6 = t5 where 
the maximum speed vmax.A is reached at t3. 

Acceleration a(t) [m/s2] 

 𝑎𝑎(𝑡𝑡) = +𝐴𝐴 ∙ cos �𝜋𝜋(𝑡𝑡−𝑡𝑡1)
(𝑡𝑡6−𝑡𝑡1)

� (62) 

Jerk j(t) [m/s3] 

 𝑗𝑗(𝑡𝑡) = 𝑑𝑑𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

= − 𝜋𝜋𝐴𝐴
(𝑡𝑡6−𝑡𝑡1)

∙ sin �𝜋𝜋(𝑡𝑡−𝑡𝑡1)
(𝑡𝑡6−𝑡𝑡1)

� (63) 

 𝑡𝑡3 − 𝑡𝑡1 = 𝑡𝑡6−𝑡𝑡1
2

 (64) 

 𝑗𝑗(𝑡𝑡3) = − 𝜋𝜋𝐴𝐴
(𝑡𝑡6−𝑡𝑡1)

= −𝐽𝐽 (65) 

 𝑡𝑡1 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

 (21) 

 ⇒ 𝑡𝑡6 = + 𝜋𝜋𝐴𝐴
𝐽𝐽

+ 𝐴𝐴
𝜑𝜑𝐽𝐽

 (66) 

 ⇒ 𝑡𝑡3 = + 𝜋𝜋𝐴𝐴
2𝐽𝐽

+ 𝐴𝐴
𝜑𝜑𝐽𝐽

 (67) 

The total flight time TA for a completed trip where the maximum acceleration A and maximum 
deceleration –A are just reached: 

 𝑇𝑇𝐴𝐴 = 𝑡𝑡6 + 𝑡𝑡1 ⇒ 𝑇𝑇𝐴𝐴 = + 𝜋𝜋𝐴𝐴
𝐽𝐽

+ 2𝐴𝐴
𝜑𝜑𝐽𝐽

 (68) 

 𝑇𝑇𝐴𝐴 = +5.25 × 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 
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Speed v(t) [m/s] 

Integration of a(t) Eq. (62) with substitution of v(t1) Eq. (30) and t1 Eq. (21) into its solution, yields: 

 𝑣𝑣(𝑡𝑡) = + 𝐴𝐴2

𝐽𝐽
∙ sin �𝐽𝐽

𝐴𝐴
∙ 𝑡𝑡 − 1

𝜑𝜑
� + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (69) 

Indeed: 
 𝑣𝑣(𝑡𝑡6) = 𝑣𝑣(𝑡𝑡1) = + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 and 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴 = 𝑣𝑣(𝑡𝑡3) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴 = + 𝐴𝐴2

𝐽𝐽
∙ �1 + 1

2𝜑𝜑
� (70) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴 = +1.53 × 𝐴𝐴2

𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

Distance s(t) [m] 

Integration of v(t) Eq. (69) with substitution of s(t1) Eq. (32) and t1 Eq. (21) into its solution, yields: 

 𝑠𝑠(𝑡𝑡) = −𝐴𝐴3

𝐽𝐽2
∙ cos �𝐽𝐽

𝐴𝐴
∙ 𝑡𝑡 − 1

𝜑𝜑
� + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
∙ 𝑡𝑡 − 𝐴𝐴3

4𝜑𝜑2𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 2𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
+ 7𝐴𝐴3

6𝐽𝐽2
− 𝐴𝐴3

4𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝐽𝐽2
 (71) 

 𝑆𝑆(𝑇𝑇𝐴𝐴) = +2 ∙ 𝑠𝑠(𝑡𝑡3) (72) 

 𝑡𝑡3 = + 𝜋𝜋𝐴𝐴
2𝐽𝐽

+ 𝐴𝐴
𝜑𝜑𝐽𝐽

 (67) 

 𝑆𝑆(𝑇𝑇𝐴𝐴) = + 𝐴𝐴3

𝐽𝐽2
∙ �+ 7

3
− 2

𝜋𝜋2𝜑𝜑2
+ 4

𝜋𝜋2𝜑𝜑
− 2

𝜋𝜋2
+ 1

2𝜑𝜑2
+ 𝜋𝜋

2𝜑𝜑
− 1

2𝜑𝜑
� (73) 

 𝑆𝑆(𝑇𝑇𝐴𝐴) = +4.01 × 𝐴𝐴3

𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

 𝑆𝑆(𝑇𝑇𝐴𝐴) = +3.90 ∙ 𝐴𝐴
3

𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 

Table 4 Traveled distances S(TA) for φ = 0.95 and φ = 1 

Eq. (73) Min. 
distance S(TA) [m] 

Jerk J [m/s3]; φ = 0.95 Jerk J [m/s3]; φ = 1 

1.0 1.1 1.2 1.35 1.5 1 1.1 1.2 1.35 1.5 

Acceleration 
A [m/s2] 

0.6 0.9 0.7 0.6 0.5 0.4 0.8 0.7 0.6 0.5 0.4 

0.8 2.1 1.7 1.4 1.1 0.9 2.0 1.7 1.4 1.1 0.9 

1.0 4.0 3.3 2.8 2.2 1.8 3.9 3.2 2.7 2.1 1.7 

1.2 6.9 5.7 4.8 3.8 3.1 6.7 5.6 4.7 3.7 3.0 
Red = traveled distance S(TA) is smaller than 1 average floor distance (3.5 m) in office buildings. The value S(TAV) (see 
below) will apply or rated speed V is reached and even continued briefly thereafter, so that the value S(TV) Eq. (60) or 
possibly S(TT) Eq. (58) will apply. 
Blue = unusual combination of A and J. 
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2.9.4 Kinematic case AV; S(TXX) = S(TAV) 
For rides where between start and stop the maximum acceleration A is reached, but not continued 
long enough to reach rated speed V, phase 1 is the same as for a “full ride” S(TT). In phase 2 
acceleration A is briefly continued. 

 

Figure 5 Acceleration a(t) in kinematic case AV 

First, the milestones t2 and t3 are determined together with the maximum reached speed vmax.AV in 
relation to the total flight time TAV: 

 𝑡𝑡1 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

 (21) 

 𝑣𝑣(𝑡𝑡1) = + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (30) 

 𝑇𝑇𝐴𝐴 = + 𝜋𝜋𝐴𝐴
𝐽𝐽

+ 2𝐴𝐴
𝜑𝜑𝐽𝐽

 (68) 

 (𝑡𝑡5 − 𝑡𝑡2) = +𝑇𝑇𝐴𝐴𝑉𝑉 − (𝑇𝑇𝐴𝐴𝑉𝑉 − 𝑇𝑇𝐴𝐴) − 2 ∙ 𝑡𝑡1 = +𝑇𝑇𝐴𝐴 −
2𝐴𝐴
𝜑𝜑𝐽𝐽

 

 (𝑡𝑡5 − 𝑡𝑡2) = + 𝜋𝜋𝐴𝐴
𝐽𝐽

 (74) 

 𝑡𝑡2 = +𝑇𝑇𝐴𝐴𝑉𝑉−(𝑡𝑡5−𝑡𝑡2)
2

= + 1
2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴
2𝐽𝐽

 (75) 

 𝑡𝑡3 = 1
2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 (76) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = 𝑣𝑣(𝑡𝑡3) = 𝑣𝑣(𝑡𝑡1) + 𝐴𝐴 ∙ (𝑇𝑇𝐴𝐴𝑉𝑉−𝑇𝑇𝐴𝐴)
2

+ ∫ 𝑎𝑎(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡=𝑡𝑡3
𝑡𝑡=𝑡𝑡2

 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = + 𝐴𝐴2

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴2

2𝐽𝐽
− 𝐴𝐴2

𝜑𝜑𝐽𝐽
+ ∫ �𝐴𝐴 ∙ cos �𝜋𝜋(𝑡𝑡−𝑡𝑡2)

(𝑡𝑡5−𝑡𝑡2)
�� 𝑑𝑑𝑡𝑡𝑡𝑡3

𝑡𝑡2
 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = + 𝐴𝐴
2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴2

2𝐽𝐽
− 𝐴𝐴2

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

𝐽𝐽
 (77) 

𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟐𝟐: 𝒕𝒕𝟏𝟏 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟐𝟐 

The same procedure as for phase 2 from the full ride is followed, but now with substitution of t2 Eq. 
(75) into Eq. (35) and Eq. (40) instead of t2 Eq. (38). This results in: 

Speed v(t) [m/s] 

 𝑣𝑣(𝑡𝑡2) = + 𝐴𝐴
2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴2

2𝐽𝐽
− 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (78) 

Distance s(t) [m] 

 𝑠𝑠(𝑡𝑡2) = + 𝐴𝐴
8
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 − 𝜋𝜋𝐴𝐴2

4𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 + 𝜋𝜋2𝐴𝐴3

8𝐽𝐽2
− 𝐴𝐴2

4𝜑𝜑𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 + 𝜋𝜋𝐴𝐴3

4𝜑𝜑𝐽𝐽2
+ 𝐴𝐴3

4𝜑𝜑2𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 2𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
+ 𝐴𝐴3

6𝐽𝐽2
− 𝐴𝐴3

4𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝐽𝐽2
 (79) 
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𝑷𝑷𝑷𝑷𝒎𝒎𝒔𝒔𝑷𝑷 𝟑𝟑 𝒕𝒕𝒕𝒕 𝟓𝟓: 𝒕𝒕𝟐𝟐 ≤ 𝒕𝒕 ≤ 𝒕𝒕𝟓𝟓 

Reduction of acceleration from +A at t2 straight on to maximum deceleration -A at t6 where the 
maximum speed vmax.AV is reached at t3 = t4. 

Acceleration a(t) [m/s2] 

 𝑡𝑡5 − 𝑡𝑡2 = + 𝜋𝜋𝐴𝐴
𝐽𝐽

 (74) 
 𝑡𝑡2 = + 1

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴
2𝐽𝐽

 (75) 
 𝑡𝑡3 = 1

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 (76) 

 𝑎𝑎(𝑡𝑡) = +𝐴𝐴 ∙ 𝑐𝑐𝑜𝑜𝑠𝑠 �𝜋𝜋(𝑡𝑡−𝑡𝑡2)
(𝑡𝑡5−𝑡𝑡2)

� = +𝐴𝐴 ∙ 𝑐𝑐𝑜𝑜𝑠𝑠 �𝐽𝐽∙(𝑡𝑡−𝑡𝑡2)
𝐴𝐴

� (62) 

 𝑎𝑎(𝑡𝑡) = +𝐴𝐴 ∙ cos �𝐽𝐽
𝐴𝐴
∙ �𝑡𝑡 − 1

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉� + 𝜋𝜋

2
� (80) 

 𝑗𝑗(𝑡𝑡) = 𝑑𝑑𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝐽𝐽 ∙ sin �𝐽𝐽
𝐴𝐴
∙ �𝑡𝑡 − 1

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉� + 𝜋𝜋

2
� (81) 

 𝑗𝑗(𝑡𝑡3) = −𝐽𝐽 (82) 

Speed v(t) [m/s] 

Integration of a(t) Eq. (80) with substitution of v(t3) = vmax.AV Eq. (77) and t3 Eq. (76) into its 
solution, yields: 

 𝑣𝑣(𝑡𝑡) = + 𝐴𝐴2

𝐽𝐽
∙ sin �𝐽𝐽

𝐴𝐴
∙ �𝑡𝑡 − 1

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉� + 𝜋𝜋

2
� + 𝐴𝐴

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴2

2𝐽𝐽
− 𝐴𝐴2

2𝜑𝜑𝐽𝐽
 (83) 

Distance s(t) [m] 

Integration of v(t) Eq. (83) with substitution of s(t2) Eq. (79) and t2 Eq. (75) into its solution, yields: 

 𝑠𝑠(𝑡𝑡) = −𝐴𝐴3

𝐽𝐽2
∙ cos �𝐽𝐽

𝐴𝐴
∙ �𝑡𝑡 − 1

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉� + 𝜋𝜋

2
� + 𝐴𝐴

2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 ∙ 𝑡𝑡 −

𝜋𝜋𝐴𝐴2

2𝐽𝐽
∙ 𝑡𝑡 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
∙ 𝑡𝑡 − 𝐴𝐴

8
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 + 𝜋𝜋𝐴𝐴2

4𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 + 𝐶𝐶84 (84) 

where 
  𝐶𝐶84 = −𝜋𝜋2𝐴𝐴3

8𝐽𝐽2
+ 𝐴𝐴3

4𝜑𝜑2𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 2𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

4𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

𝜋𝜋2𝐽𝐽2
+ 7𝐴𝐴3

6𝐽𝐽2
 . 

The total traveled distance S(TAV) is determined by substitution of t3 = ½∙TAV Eq. (76) into Eq. (84) 
to get s(t3) which is then multiplied by 2: 

 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) = + 𝐴𝐴
4
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 − 𝐴𝐴2

2𝜑𝜑𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋2𝐴𝐴3

4𝐽𝐽2
+ 𝐴𝐴3

2𝜑𝜑2𝐽𝐽2
− 2𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+ 4𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
− 𝐴𝐴3

2𝜑𝜑𝐽𝐽2
− 2𝐴𝐴3

𝜋𝜋2𝐽𝐽2
+ 7𝐴𝐴3

3𝐽𝐽2
 (85) 

 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) = + 𝐴𝐴
4
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 − 𝐴𝐴2

2𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 − 0.13 ∙ 𝐴𝐴

3

𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 

 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) = + 𝐴𝐴
4
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 − 0.53 ∙ 𝐴𝐴

2

𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 − 0.11 ∙ 𝐴𝐴

3

𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

The roots TAV1 and TAV2 of Eq. (85) are solved by using the ‘quadratic formula’: 

𝑥𝑥1, 𝑥𝑥2 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎
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Of course, only the positive result applies. 

 𝑇𝑇𝐴𝐴𝑉𝑉 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

+ ��+𝜋𝜋2 + 8
𝜋𝜋2𝜑𝜑2

− 16
𝜋𝜋2𝜑𝜑

+ 2
𝜑𝜑

+ 8
𝜋𝜋2
− 1

𝜑𝜑2
− 28

3
� ∙ 𝐴𝐴

2

𝐽𝐽2
+ 4

𝐴𝐴
∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) (86) 

 𝑇𝑇𝐴𝐴𝑉𝑉 = + 𝐴𝐴
𝐽𝐽

+ �+𝟏𝟏.𝟓𝟓𝟒𝟒 × 𝐴𝐴2

𝐽𝐽2
+ 4

𝐴𝐴
× 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉);  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (87) 

 𝑇𝑇𝐴𝐴𝑉𝑉 = +1.05 × 𝐴𝐴
𝐽𝐽

+ �1.54 × 𝐴𝐴2

𝐽𝐽2
+ 4

𝐴𝐴
× 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉);  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

The corresponding equation from literature differs from Eq. (87) by the factor 1.54 in the first term 
of the square root if φ = 1: 

 𝑇𝑇𝐴𝐴𝑉𝑉 = + 𝐴𝐴
𝐽𝐽

+ �+ 𝐴𝐴2

𝐽𝐽2
+ 4

𝐴𝐴
∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) (A2.9) 

Speed vmax.AV [m/s] 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = + 𝐴𝐴
2
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋𝐴𝐴2

2𝐽𝐽
− 𝐴𝐴2

2𝜑𝜑𝐽𝐽
+ 𝐴𝐴2

𝐽𝐽
 (77) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = �+1 − 𝜋𝜋
2
� ∙ 𝐴𝐴

2

𝐽𝐽
+ ��+ 𝜋𝜋2

4
+ 2

𝜋𝜋2𝜑𝜑2
− 4

𝜋𝜋2𝜑𝜑
+ 1

2𝜑𝜑
+ 2

𝜋𝜋2
− 1

4𝜑𝜑2
− 7

3
� ∙ 𝐴𝐴

4

𝐽𝐽2
+ 𝐴𝐴 ∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) (88) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = −0.5𝟕𝟕 × 𝐴𝐴2

𝐽𝐽
+ �+𝟎𝟎.𝟑𝟑𝟑𝟑 × 𝐴𝐴4

𝐽𝐽2
+ 𝐴𝐴 × 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉);  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 (89) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = −0.57 × 𝐴𝐴2

𝐽𝐽
+ �+0.38 × 𝐴𝐴4

𝐽𝐽2
+ 𝐴𝐴 × 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉);  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 

The corresponding equation from literature differs too from Eq. (89) if φ = 1: 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = −𝐴𝐴2

2𝐽𝐽
+ �+ 𝐴𝐴4

4𝐽𝐽2
+ 𝐴𝐴 ∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) (A2.7) 

Eq. (87) and Eq. (89) are the only ones in the derived set of formulas with a numerical deviation 
from their counterparts in the literature when φ = 1. The flight time TAV, calculated for a ‘chosen’ 
distance S(TAV) with Eq. (86) is longer and the maximum achieved speed vmax.AV, calculated with 
Eq. (88) is lower. This deviation is further elaborated in section 3.2 by comparison of the results 
from the equations of both origins. 

Flight time TAV [s] 

By determining the limit TAV for S(TAV) approaching to S(TV) can be established that Eq. (86) is fit 
for the entire range TA ≤ TAV ≤ TV: 

 𝑇𝑇𝐴𝐴𝑉𝑉 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

+ ��+𝜋𝜋2 + 8
𝜋𝜋2𝜑𝜑2

− 16
𝜋𝜋2𝜑𝜑

+ 2
𝜑𝜑

+ 8
𝜋𝜋2
− 1

𝜑𝜑2
− 28

3
� ∙ 𝐴𝐴

2

𝐽𝐽2
+ 4

𝐴𝐴
∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) (86) 

 lim
𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉)→𝑆𝑆(𝑇𝑇𝑉𝑉)

𝑇𝑇𝐴𝐴𝑉𝑉 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

+ ��+𝜋𝜋2 + 8
𝜋𝜋2𝜑𝜑2

− 16
𝜋𝜋2𝜑𝜑

+ 2
𝜑𝜑

+ 8
𝜋𝜋2
− 1

𝜑𝜑2
− 28

3
� ∙ 𝐴𝐴

2

𝐽𝐽2
+ 4

𝐴𝐴
∙ 𝑆𝑆(𝑇𝑇𝑉𝑉) (90) 

 𝑆𝑆(𝑇𝑇𝑉𝑉) = + 𝑉𝑉2

𝐴𝐴
+ 𝐴𝐴𝑉𝑉

𝜑𝜑𝐽𝐽
 (60) 

 𝑇𝑇𝑉𝑉 = + 2𝑉𝑉
𝐴𝐴

+ 2𝐴𝐴
𝜑𝜑𝐽𝐽

= + 2∙𝑆𝑆(𝑇𝑇𝑉𝑉)
𝑉𝑉

 (61) 

 𝑆𝑆(𝑇𝑇𝑉𝑉) = 𝑉𝑉
2
∙ 𝑇𝑇𝑉𝑉 (91) 

 lim
𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉)→𝑆𝑆(𝑇𝑇𝑉𝑉)

𝑇𝑇𝐴𝐴𝑉𝑉 = + 𝐴𝐴
𝜑𝜑𝐽𝐽

+ ��+𝜋𝜋2 + 8
𝜋𝜋2𝜑𝜑2

− 16
𝜋𝜋2𝜑𝜑

+ 2
𝜑𝜑

+ 8
𝜋𝜋2
− 1

𝜑𝜑2
− 28

3
� ∙ 𝐴𝐴

2

𝐽𝐽2
+ 2𝑉𝑉

𝐴𝐴
∙ 𝑇𝑇𝑉𝑉 (92) 
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Table 5 Comparison Lim TAV for S(TAV) → S(TV) with TV 

Eq. (90) Lim TAV 
for 

S(TAV) → S(TV) [s] 

Speed V [m/s] 
Eq. (61) flight 

time TV [s] 

Speed V [m/s] 
1.0 1.5 2.5 4.0 6.0 1.0 1.5 2.5 4.0 6.0 

Jerk J [m/s3]; φ = 1 Jerk J [m/s3]; φ = 1 

1.0 1.1 1.2 1.35 1.5 1.0 1.1 1.2 1.35 1.5 

Acceleration A 
[m/s2] 

0.6 4.6 6.1 9.3 14.2 20.8 

A [m/s2] 

0.6 4.5 6.1 9.3 14.2 20.8 
0.8 4.2 5.2 7.6 11.2 16.1 0.8 4.1 5.2 7.6 11.2 16.1 
1.0 4.1 4.9 6.7 9.5 13.3 1.0 4.0 4.8 6.7 9.5 13.3 
1.2 4.2 4.8 6.2 8.5 11.6 1.2 4.1 4.7 6.2 8.4 11.6 

Blue = unusual combination of A and J. 

The effect of variation of φ between 0.95 and 1.0 is small. For the usual combinations of A and J, 
the maximum difference between Lim TAV Eq. (90) and TV Eq. (61) is small too, namely: 1% (Lim 
TAV takes longer). Thus, Eq. (86) for TAV can be used for the entire range of TA ≤ TAV ≤ TV. 

2.9.5 Kinematic case n; S(TXX) < S(TA) 
For short trips where maximum acceleration A is not reached, the ratio between S(Tn) and Tn is 
supposed to be constant and equal to S(TA) : TA. The trip function is to be scaled linearly: 

 

Figure 6 Linear scaling for a short trip 

 𝑇𝑇𝐴𝐴 = +5.25 ∙ 𝐴𝐴
𝐽𝐽

;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 (68) 
 𝑆𝑆(𝑇𝑇𝐴𝐴) = +4.01 ∙ 𝐴𝐴

3

𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 (73) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴 = +1.53 ∙ 𝐴𝐴
2

𝐽𝐽
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 (70) 

 𝑆𝑆(𝑇𝑇𝐴𝐴):𝑇𝑇𝐴𝐴 = +0.77 ∙ 𝐴𝐴
2

𝐽𝐽
= 𝑆𝑆(𝑇𝑇𝑠𝑠):𝑇𝑇𝑠𝑠; 𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 (93) 

Total duration Tn of a ride between start and stop: 

 𝑇𝑇𝑠𝑠 = +1.31 × 𝐽𝐽
𝐴𝐴2

× 𝑆𝑆(𝑇𝑇𝑠𝑠); 𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 (94) 

Maximum achieved speed vmax.n: 

 𝑆𝑆(𝑇𝑇𝐴𝐴):𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴 = 2.63 × 𝐴𝐴
𝐽𝐽

= 𝑆𝑆(𝑇𝑇𝑠𝑠): 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝑠𝑠 (95) 

 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝑠𝑠 = +0.38 × 𝐽𝐽
𝐴𝐴

× 𝑆𝑆(𝑇𝑇𝑠𝑠); 𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 0.95 (96) 
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2.10 Overview of formulas 
Table 6 Overview of formulas 

Literature [2] and [3] 
sorted according [3] 

Trip function with φ 

(6.16); (A2.2) 

𝑠𝑠(𝑡𝑡1) = +
𝐴𝐴3

6𝐽𝐽2
 

(32) 

𝑠𝑠(𝑡𝑡1) = +
𝐴𝐴3

𝐽𝐽2
∙ �+

1
4𝜑𝜑2 −

1
𝜋𝜋2𝜑𝜑2 +

2
𝜋𝜋2𝜑𝜑

+
1
6
−

1
4𝜑𝜑

−
1
𝜋𝜋2
� 

(6.7); (A2.3) 

𝑡𝑡1 = +
𝐴𝐴
𝐽𝐽

 

(21) 

𝑡𝑡1 = +
𝐴𝐴
𝜑𝜑𝐽𝐽

 

(6.15); (A2.4) 

𝑣𝑣(𝑡𝑡1) = +
𝐽𝐽
2
∙ 𝑡𝑡12 = +

𝐴𝐴2

2𝐽𝐽
 

(30) 

𝑣𝑣(𝑡𝑡1) = +
𝐴𝐴2

2𝜑𝜑𝐽𝐽
 

(6.19) 

𝑣𝑣(𝑡𝑡) = +𝐴𝐴 ∙ 𝑡𝑡 −
𝐴𝐴2

2𝐽𝐽
 

(35) 

𝑣𝑣(𝑡𝑡) = +𝐴𝐴 ∙ 𝑡𝑡 −
𝐴𝐴2

2𝜑𝜑𝐽𝐽
 

(6.24); (A2.5) 

𝑠𝑠(𝑡𝑡3) = +
𝑉𝑉2

2𝐴𝐴
+
𝐴𝐴𝑉𝑉
2𝐽𝐽

 

(53) 

𝑠𝑠(𝑡𝑡3) = +
𝑉𝑉2

2𝐴𝐴
+
𝐴𝐴𝑉𝑉
2𝜑𝜑𝐽𝐽

 

(6.9); (A2.6) 

𝑡𝑡3 = +
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝐽𝐽

 

(42) 

𝑡𝑡3 = +
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝜑𝜑𝐽𝐽

 

(61) 

𝑇𝑇𝑉𝑉 = +
2𝑉𝑉
𝐴𝐴

+
2𝐴𝐴
𝜑𝜑𝐽𝐽

= +
2 ∙ 𝑆𝑆(𝑇𝑇𝑉𝑉)

𝑉𝑉
 

(A2.7) 

𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = −
𝐴𝐴2

2𝐽𝐽
+�+

𝐴𝐴4

4𝐽𝐽2
+ 𝐴𝐴 ∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) 

(88) 

𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 = �+1−
𝜋𝜋
2
� ∙
𝐴𝐴2

𝐽𝐽
+ ��+

𝜋𝜋2

4
+

2
𝜋𝜋2𝜑𝜑2 −

4
𝜋𝜋2𝜑𝜑

+
1

2𝜑𝜑
+

2
𝜋𝜋2

−
1

4𝜑𝜑2 −
7
3�

∙
𝐴𝐴4

𝐽𝐽2
+ 𝐴𝐴 ∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) 

(89) 

𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴𝑉𝑉 − 0.5𝟕𝟕 ×
𝐴𝐴2

𝐽𝐽
+�+𝟎𝟎.𝟑𝟑𝟑𝟑×

𝐴𝐴4

𝐽𝐽2
+ 𝐴𝐴 × 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉);  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 

 
(6.49) 

𝑆𝑆(𝑇𝑇𝑉𝑉) =
+𝐽𝐽𝑉𝑉2 + 𝐴𝐴2𝑉𝑉

𝐽𝐽𝐴𝐴
 

(60) 

𝑆𝑆(𝑇𝑇𝑉𝑉) =
+𝜑𝜑𝐽𝐽𝑉𝑉2 + 𝐴𝐴2𝑉𝑉

𝜑𝜑𝐽𝐽𝐴𝐴
 

(6.36); (A2.8) 

𝑇𝑇𝑇𝑇 =
𝑆𝑆(𝑇𝑇𝑇𝑇)
𝑉𝑉

+
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝐽𝐽

 

(59) 

𝑇𝑇𝑇𝑇 =
𝑆𝑆(𝑇𝑇𝑇𝑇)
𝑉𝑉

+
𝑉𝑉
𝐴𝐴

+
𝐴𝐴
𝜑𝜑𝐽𝐽

 

(6.56); (A2.9) 

𝑇𝑇𝐴𝐴𝑉𝑉 = +
𝐴𝐴
𝐽𝐽

+ �+
𝐴𝐴2

𝐽𝐽2
+

4
𝐴𝐴
∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) 

(86) 

𝑇𝑇𝐴𝐴𝑉𝑉 = +
𝐴𝐴
𝜑𝜑𝐽𝐽

+ ��+𝜋𝜋2 +
8

𝜋𝜋2𝜑𝜑2 −
16
𝜋𝜋2𝜑𝜑

+
2
𝜑𝜑

+
8
𝜋𝜋2

−
1
𝜑𝜑2 −

28
3
� ∙
𝐴𝐴2

𝐽𝐽2
+

4
𝐴𝐴
∙ 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) 

(87) 

𝑇𝑇𝐴𝐴𝑉𝑉 = +
𝐴𝐴
𝐽𝐽

+�+𝟏𝟏.𝟓𝟓𝟒𝟒 ×
𝐴𝐴2

𝐽𝐽2
+

4
𝐴𝐴

× 𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉);  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 

 
 (68) 

𝑇𝑇𝐴𝐴 = +
𝜋𝜋𝐴𝐴
𝐽𝐽

+
2𝐴𝐴
𝜑𝜑𝐽𝐽

 

 (69) 

𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚.𝐴𝐴 = +
𝐴𝐴2

𝐽𝐽
∙ �1 +

1
2𝜑𝜑

� 

 (73) 

𝑆𝑆(𝑇𝑇𝐴𝐴) = +
𝐴𝐴3

𝐽𝐽2
∙ �+

7
3
−

2
𝜋𝜋2𝜑𝜑2 +

4
𝜋𝜋2𝜑𝜑

−
2
𝜋𝜋2

+
1

2𝜑𝜑2 +
𝜋𝜋

2𝜑𝜑
−

1
2𝜑𝜑

� 

 (85) 

𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) = +
𝐴𝐴
4
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 −

𝐴𝐴2

2𝜑𝜑𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 −

𝜋𝜋2𝐴𝐴3

4𝐽𝐽2
+

𝐴𝐴3

2𝜑𝜑2𝐽𝐽2
−

2𝐴𝐴3

𝜋𝜋2𝜑𝜑2𝐽𝐽2
+

4𝐴𝐴3

𝜋𝜋2𝜑𝜑𝐽𝐽2
−

𝐴𝐴3

2𝜑𝜑𝐽𝐽2
−

2𝐴𝐴3

𝜋𝜋2𝐽𝐽2
+

7𝐴𝐴3

3𝐽𝐽2
 

𝑆𝑆(𝑇𝑇𝐴𝐴𝑉𝑉) = +
𝐴𝐴
4
∙ 𝑇𝑇𝐴𝐴𝑉𝑉2 −

𝐴𝐴2

2𝐽𝐽
∙ 𝑇𝑇𝐴𝐴𝑉𝑉 − 0.13 ∙

𝐴𝐴3

𝐽𝐽2
;  𝑓𝑓𝑜𝑜𝑜𝑜 𝜑𝜑 = 1 

 
Except for Eq. (87) and (89), all pairs of formulas match exactly for φ = 1, see section 2.9.4 and 3.2. 
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3 COMPARISON RESULTS TRIP FUNCTION WITH RESULTS IN LITERATURE 
3.1 Lift kinematics in the literature 
The equations from the known literature about lift kinematics are derived from a ‘simplified 
model’. The functions j(t) and a(t) for jerk and acceleration have discontinuous transitions, as 
shown in Fig. 7. 

 

 

Figure 7 Trip function visualized in the literature (left [2], right [3]) 

The results for milestones, etc. in the literature are exact equal to the results of the preceding 
mathematical derivation when φ = 1. The only exceptions are [2] Eq. (6.56) and [3] Eq. (A2.9) 
versus Eq. (86) for TAV and [3] Eq. (A2.7) versus Eq. (88) for vmax.AV. The resemblance is visible in 
the references throughout the derivation to the equations in [2] Chapter 6 and [3] Annex A2. 
Therefore, the results of the general continuous trip function for φ = 1 can be regarded as a specific 
case (i.e. the simplified model). The exceptions are analyzed in the next section. 
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3.2 Comparison of results for TAV and vmax.AV from literature 
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The results of the theoretically derived equations Eq. (86) for TAV and Eq. (88) for vmax.AV which are 
shown in Table 7 and 8, were calculated with φ = 0.95 (at the left) and φ = 0.50 (in the middle). 
Although φ is not applicable in the equations from [2] and [3], their results (at the right) are 
nevertheless compared to those of Eq. (86) and (88). This is to show the effect of changing the 
value of φ in Eq. (86) and (88) in comparison to the results of the equations from [2] and [3]. 

For the usual combinations of A and J and φ = 0.95, the relative deviation of the results for the 
flight time TAV, determined with [2] Eq. (6.56) and [3] Eq. (A2.9), is -1% to -3% lower (shorter) 
than the results of Eq. (86). Under the same conditions, the relative deviation of the maximum 
achieved speed vmax.AV, determined with [3] Eq. (A2.7), varies between +1% and +3% higher 
(faster) than the results of Eq. (88). The relative deviation DR of, for example, TAV is determined this 
way: 

 𝐷𝐷𝑅𝑅 =
𝑅𝑅[2][3]−𝑅𝑅(86)

𝑅𝑅(86)
× 100% (97) 

 R[2][3] = Result from [2] Eq. (6.56) and [3] Eq. (A2.9) 
 R(86) = Result from Eq. (86) 

When φ is reduced to 0.50 the relative deviation of the results for the flight time TAV decreases 
substantially to percentages between -9% and -19% ([2], [3] shorter). 

The relative deviation DR for vmax.AV is less affected by this reduction of φ. It stays limited to 
percentages between +2% and +4% ([2], [3] faster). 

The influence of variation of the value of φ between 0.95 and 1.0 on the results from Eq. (86) for 
the flight time TAV is at the most 1.1% and negligible for the results from Eq. (88) for the maximum 
achieved speed vmax.AV. 

3.3 Comparison of handling capacity HC 

3.3.1 Comparison of HC for a single case 
For lift simulation and design is the effect of varying φ on the handling capacity the most relevant 
issue. The following comparison of handling capacities is based on imaginary continuous one-way 
express traffic between two fixed stops with maximum carload, full up, empty down or reverse. The 
round trip time RTT is necessary to determine the handling capacity. The RTT is, as is known, 
calculated by adding the passenger transfer time, door opening time, etc. to the flight time TXX 
(multiplied by 2), which is determined by the trip function s(t) and for comparison, according to [2] 
and [3]. Fig. 8 shows a comparison of results by s(t), [2] and [3] for one single case. 

 

Figure 8 Comparison results from the trip function s(t) and the equations from [2] and [3] 
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The example in Fig. 8 shows that the results for the number of passengers handled in 1 hour HC60 
and S(TXX) = S(TAV) = 3.5 m are very close already with a relative deviation of 0.37% only. This 
relative deviation for HC60 is determined in analogy to Eq. (97): 

 𝐷𝐷𝑅𝑅 =
𝑅𝑅[2][3]−𝑅𝑅𝑠𝑠(𝛥𝛥)

𝑅𝑅𝑠𝑠(𝛥𝛥)
× 100% (98) 

 R[2][3] = Result from [2] and/or [3] 
 Rs(t) = Result from s(t) 

S(TAV) = 3.5 m is one floor distance; in this case is the rated speed V not reached. 

3.3.2 Comparison of HC for multiple cases 
To gain more insight in the characteristics of the relative deviation of HC60, it has been calculated 
for five lift types: 

Table 9 Properties of the used five lift types 

Lift type 1 2 3 4 5 

Rated carload [kg] 630 1,000 1,275 1,600 1,600 

Rated speed [m/s] 1.0 1.6 2.5 4.0 6.0 

Acceleration rate [m/s2] 0.6 0.7 0.8 1.0 1.2 

Jerk rate [m/s3] 1.0 1.2 1.35 1.5 1.5 

S(TA) [m]; Eq. (73); φ = 0.95. See Table 4 0.9 1.0 1.1 1.8 3.1 

For each lift type the relative deviation of HC60 is determined for every S(TXX) value which is an 
element of the set {0.25 m, 0.50 m, … , 4.75 m, 5.0 m} (0 m is not included). The maximum 
carload for all lift types is 60%. The secondary features such as door closing time are calculated in 
accordance with the lift type. The results are shown in Fig. 9: 

 

Figure 9 Relative deviation DR of HC60 by [2] and [3] from HC60 by S(TXX) for φ = 0.95 
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The values of S(TXX) in the graph from where the curves from left to right are more or less 
horizontal between 0% and +0.4%, appear to be close to the S(TA) values for the different lift types, 
see Table 9. The substantial negative relative deviation for S(TXX) < S(TA) is caused by the 
application of [2] Eq. (6.56) and [3] Eq. (A2.9). These two equations are actually only valid for  
S(TXX) = S(TAV) > S(TA) but nevertheless applied for S(TXX) < S(TA), because in [2] and [3] no 
applicable equations are given for that domain. 

For values of S(TXX) greater than 5 m the relative deviation of HC60 remains more or less constant 
between 0% and +0.3% with a very slight decrease to +0.2%. This applies even for distances to 
S(TXX) = S(TT) = 50 m and more. This phenomenon can be explained by the fact that the absolute 
HC60 for each lift type is reduced by the increasing distance and RTT. This reduction compensates 
the increase of the total flight time TT by the effect of acceleration and deceleration, because that 
effect too is reduced by the increasing distance and RTT. 

The red star in Fig. 9 marks the result of the single case for lift type 5 at S(TXX) = 3.5 m, displayed 
in Fig. 8. This result DR = +0.37%. According to [2] and [3] the HC60 = 815 transported 
passengers. This is 3 more than the HC60 = 812 transported passengers, determined by the 
continuous trip function s(t). 

Fig. 10 shows the effect of varying φ between 0.5 and 0.95 on the HC60 curve of lift type 5 (same 
dark blue curve for φ = 0.95 as in Fig. 9). Reduction of φ causes reduction of the slope angle of the 
curve below S(TA), while S(TA) itself and the relative deviation for higher values of S(TXX) ≥ S(TA) 
increase. The relative deviation for S(TXX) ≥ S(TA) and φ = 0.95 stays limited to maximum +0.4%. 
For φ = 0.5 the relative deviation increases to +3.1% at S(TXX) = S(TA) ≈ 5 m followed by reduction 
to ca. +2.1% for (much) higher values of S(TXX). 

 

Figure 10 Relative deviation DR of HC60 for lift type 5 with varying ϕ 

4 CONCLUSION 
The preceding sections 3.3.1 and 3.3.2 show that for the domain S(TXX) ≥ S(TA), the results for 
HC60 of calculations according to [2] and [3] never deviate more from the continuous trip function 
s(t) than 0.75% when φ > 0.85. As stated in the introduction, a higher value of φ (e.g. 0.9 to 0.95) is 
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preferred, because of comfort for the passengers in the car. This higher value reduces the deviation 
of the handling capacities calculated according to [2] and [3] relative to the result of the trip 
function s(t) even more to 0.4% only. The more deviating results for the domain S(TXX) < S(TA) are 
less important for entire calculations of handling capacity of lifts, because these very short trips are 
more or less exceptional in normal usage conditions. Therefore, the main conclusion is that the 
equations and formulas based on the simplified model from [2] and [3] are sufficient accurate for 
the calculation of handling capacity, round trip and journey times, etc. of lifts. 
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