
Transportation Systems in Buildings Vol 4 April 2022

Towards a global traffic control (dispatcher) algorithm - interface
prototype design

Jonathan Beebe
Jonathan Beebe Ltd., UK, jonathan@jonathanbeebe.com

Abstract. This paper presents an overview of the design and development of a prototype Global
Dispatcher Interface (GDI) for the control of a group of lifts. The role of the dispatcher is to assign
passenger calls to the optimal lift in a group, as decided by a dispatcher algorithm. The GDI is
independent of the underlying algorithm, which may be distributed remotely, and provides a
standard means through which all interactions with the dispatcher may occur. To warrant the
“Global” appellation the GDI must support any of the currently available, as well as anticipated,
call station modes, types and configurations of cars, topology of control equipment and buildings.
The design process is a continuation of a recognised Software Development Lifecycle, centred on
Use Cases in a UML model, the initiation of which is covered in a previous paper. Significant
diagrams from the model are presented and discussed to illustrate the evolution of the prototype
design. One of the requirements, resulting from analysis of the Use Cases, identifies that the GDI
design must be compatible with a publish-and-subscribe architecture and a RESTful interface is
selected for this purpose. Where possible, the prototype design uses open standards with an
emphasis on demonstrating those aspects that are specific to lift system dispatcher operation, while
attempting to demonstrate independence from implementation details such as programming
language, network protocols, etc. The Standard Elevator Information Schema is particularly
relevant and fulfils these objectives. The operation of the working prototype, in conjunction with
simulated lifts and passengers, is presented as a validation of the design.

Keywords: Global dispatcher, Standard Elevator Information Schema, group control, design,
prototype, REST, API, UML

1 INTRODUCTION
While definitions of standard group control algorithms have been documented [1], the reality of
group control to date is that manufacturers have created proprietary designs that are inextricably
linked to their own lift equipment. The result is that it is not possible accurately to compare or
predict the effects on performance of different control policies during the design phase of a
building, or in advance of a refurbishment of the lifts. The benefit of a standard interface is that it
would make it possible to supply the dispatching capability in a component form that could be
"plugged" into any group of lifts that conforms to the interface.

Secondly, a dispatcher design which has been configured and validated using simulation can be
transferred directly into a physical installation with confidence, if both the simulator and the real
lifts use the same standard interface.

Additionally, as lifts become better integrated with the other services of so-called "smart buildings"
and with the introduction of applications that allow passengers to register requests for lift travel via
a variety of channels [2] including personal mobile devices, an interface that allows simplified and
standardised secure access to the group call assignment mechanism becomes increasingly desirable.

A previous paper [3] analysed the requirements for a Global Dispatcher Interface (GDI) via which a
group of lifts could be controlled. Current trends and possible future developments in lift group
controller technology were reviewed so that the identified requirements are sufficiently broad and
flexible to avoid the analysis becoming prematurely outdated. The paper presented a structured
statement of the requirements that a GDI must satisfy, followed by an analysis of those

2

requirements using the Requirements Capture and subsequent Analysis phases of a light-weight
Software Development Lifecycle (SDLC) [4]. The outputs of these initial phases of the process are

• Passenger (user perspective) use cases.
• Dispatcher (system perspective) use cases
• Requirements catalogue
• Domain object catalogue

These outputs take the form of a UML Model plus supporting report documentation generated from
the model and, because of their number and complexity, are published separately from the paper,
which can only present the key features and conclusions. The report documents can be found at the
project website [5]. The model has been developed and is maintained via a specialized tool[6]
which supports the entire SDLC.

The current paper continues the SDLC process with a discussion of the design and development of a
functioning prototype. By definition, a software prototype [7] is not intended to be deployed in a
live situation serving real users (i.e. passengers, maintainers, managers), rather it is intended to
demonstrate the viability of delivering a variety of key functional capabilities, while other
characteristics may be only partially implemented or completely omitted. At the conclusion of
prototype evaluation, the software should be archived and the design and development phases
should be completely reiterated but from that point onwards, with the additional requirements of
security, performance, robustness and cost fully accounted for in the design.

In addition to the GDI, the prototype demonstration system consists of a configurable simulator (a
commercial product [8]) of passengers and of lift car activity. New gateway software has been
developed to provide a more realistic representation of lift and call registration activity, which in
real life (as opposed to a simulation program) are enacted as independent asynchronous activities.

Whilst the subject of the current paper is the design of the GDI prototype, the discussion includes
some details of the operation of the prototype lift and landing call gateway software, where it is
helpful to illustrate the sequence of intended interactions with the interface.

An important point, presented in [3], relates to the preferred use of open standards to provide the
generic hardware and software, which are of themselves not specific to lift systems. Thus the
discussion can concentrate on those considerations which are specific to lift systems. In response,
the GDI prototype sets out to demonstrate the delivery of dispatching functionality supported by an
infrastructure built of as many interoperating, heterogeneous and open technology standards (e.g.
programming language, network protocol, etc) as it is practicable to include.

2 SOME RELEVANT TERMS
The current paper makes frequent use of terms that are relevant in the domain of lift control:
• Landing call (LC)
• Cars
• Algorithm
These and other terms are defined in Section 2 of [3] however two key terms are copied here:

Standard Elevator Information Schema (SEIS) [9] – is a standard for communicating static
information, such as configuration details, dynamic information such as current floor and registered
calls and events such as call registrations and car trips, between all manner of systems and users of
passenger lifts. It comprises a set of definitions of complex and simple data types and the structures
in which they may be used. This paper makes frequent references to the schema, both for data types
of parameters passed in messages and also for the internal data structures of the dispatcher interface,

3

and these are indicated by text in CamelCase, which (for the digital format of this document)
includes a hyperlink to the definition on the website where the schema is published.

Global Dispatcher Service – is a standard, non-proprietary mechanism for assigning a landing call
to the lift car most suited to serving that call. It therefore includes an element - the "dispatcher" -
which can produce the optimal assignment decision. The GDI encapsulates the dispatcher and is the
route by which all access to the Global Dispatcher Service is made.

3 GDI ANALYSIS
During the analysis phase of the SDLC, the detailed description text of the system use cases (the use
case “story” or “flow”) provides the basis for developing a more detailed diagrammatic definition of
the sequences of interactions that must occur between the collaborating domain objects. This is
achieved through the development of sequence diagrams which elaborate the messages passed
between the objects as the use case proceeds. A separate sequence diagram [10] is developed for
each significant alternative route (“scenario”) [11] through the use case (often the result of different
outcomes from an If-Then-Else like decision). For example:

“When the assigned car arrives at the call origin floor, if the dispatcher has not been
informed of the passenger's destination floor the passenger's call is then deleted from the list
of current calls. However, if the destination floor is known then the call is retained but its
status is changed to "Answered".

While there was insufficient space in [3] to include all of these sequence diagrams, they are
available at [5] and an example is included for illustration in the following section. It is then
through the elaboration of sequence diagrams that the design phase of the SDLC can be
commenced. During the design phase further sequence diagrams are produced but now showing the
collaborations between the software components which will be implemented rather than abstract
domain objects. This paper is concerned with the design of the Global Dispatcher Interface only but
the diagrams also consider the operation of the dispatcher itself to ensure that all of the dispatcher
requirements are supported by the interface. The full set of design sequence diagrams is maintained
at [12].

http://www.std4lift.info/

4

3.1 Example of Analysis Phase System Use Case - Assign Call

3.1.1 Assign Call -Sequence Diagrams

Figure 1 Assign Call (Single Dispatcher)

LC Device/App

(from
Domain
Objects)

Car

(from
Domain
Objects)

otherCar1

(from
Domain
Objects)

otherCar2

(from
Domain
Objects)

Passenger

(from Passenger Use
Cases)

DispatcherInterface

(from
Domain
Objects)

Heuristics + Cost
Function

(from
Domain
Objects)

Assign Call (Non-Distributed)

alt For Each Car(CarID)

Request Call

Calculate Cost

Select Minimum
Cost Assignment

Publish
Assignment

CalculateAssignmentCost(CarID)

CallRegistration Event
(AssignedTo=noCar)

notify assignment
(CarID, Route)

SelectMinCostCar(Origin, Destination,Direction, StartTime):
Min Cost Car

Request to travel()

Confirmation()

*MinCostCar(): CarID

CallAssignmentEvent
(CarID)

5

Figure 2 Assign Call (Scenario 1 - Distributed dispatcher)

LC Device/App

(from
Domain
Objects)

otherCar2

(from
Domain
Objects)

otherCar1

(from
Domain
Objects)

Car

(from
Domain
Objects)

Bid Manager

(from
Domain
Objects)

DispatcherInterface

(from
Domain
Objects)

Heuristics + Cost
Function

(from
Domain
Objects)

AllCarsState

(from
Domain
Objects)

{Await all bid responses
or ResponseTimeout}

alt ForEach Local Car(CarID)

[car == available]

remoteDispatcherInterface1remoteDispatcherInterface1

remoteDispatcherInterface2remoteDispatcherInterface2

remoteDispatcherInterface1remoteDispatcherInterface1

remoteDispatcherInterface2remoteDispatcherInterface2

remoteDispatcherInterface1remoteDispatcherInterface1

remoteDispatcherInterface2remoteDispatcherInterface2

Passenger

(from Passenger Use
Cases)

Assign Call (Distributed)

Register Call

Prepare
local bids

Share local ...

Assess all ...

Select
Minimum ...

Publish
Assignment

CallRegistration Event
(AssignedTo=noCar)

bid(otherCar2)

Request to travel()

bid(CarID)

bid(otherCar1)

CallDeassignmentEvent
(otherCar1)

bid
(CarID)

winning bid
(CarID)

select winning bid()

CallDeassignmentEvent
(otherCar2)

Confirmation()

evaluateCost(CarID)

bid(CarID=otherCar2)

bid(CarID)

notify assignment
(CarID Route)

CallAssignmentEvent
(CarID)

bid(CarID=otherCar1)

get(CARx):
any car

6

3.1.2 Assign Call – Use Case Story (detailed description)
The paragraphs of this section are an extract of the description text of the Assign Call system use
case. They outline the flow of different Scenarios (non-distributed and distributed), and Alternative
Path 1, which covers exceptional behaviour (acknowledgement not received).

3.1.2.1 Register Call
Any client (including a passenger signalling device) may make a request to travel. The request
includes the following information:
• call floor
• call direction or destination floor
• registration time
in the form of a CallRegistration event.
N.B. Inclusion of registration time means this request may (re)occur at any time after the initial call
registration event and may therefore be a request for a call to be re-assigned or simply a delayed
request if no car was available for assignment earlier. In the case of re-assignment the dispatcher
will have a record of the currently assigned car and this information may influence the result of the
new assignment, though the decision would be a characteristic of the specific dispatcher algorithm
and not of the dispatcher interface.

At the discretion of the specific dispatcher algorithm (not the dispatcher interface) an Assign Call
request may initiate the re-assignment of other previously assigned calls, which will result in
multiple executions of the Assign Call use case (i.e. once for each call to be re-assigned).

3.1.2.2 Calculate Cost
The dispatcher algorithm calculates the cost of assigning the call to each of the registered and
available client cars according to its own internal algorithm design. The term "cost" is not restricted
to a purely financial cost and may be evaluated in terms of one or more criteria such as
• waiting time,
• system response time,
• energy consumed,
• etc
as a function of the increase in the value of that parameter after the call has been assigned compared
to the cost before it was assigned to the car. The algorithm may include penalties or incentives that
are derived from a logical analysis which will modify the simple cost.
If an overriding criterion is included in the algorithm such as never assigning a call that would
cause the car to become overloaded then that car will be marked as "blocked" for this calculation.
N.B. Car availability for assignment may be determined by a variety of properties such as:

• the operating mode of the car
• whether the car is able to service the call floor(s)

However, the availability decision is a characteristic of the specific dispatcher algorithm and not of
the dispatcher interface.

3.1.2.3 Scenario 1 - Distributed Dispatcher
The dispatcher may be distributed as a number of collaborating instances, each responsible for a
unique set of one or more registered client cars. In this case each dispatcher instance will respond
with a "bid" for each client car, which is the cost of assignment for adding the call to the travel plan
of the car. A period is defined (internally by the dispatcher service) during which bids may be
made.

http://www.std4lift.info/HTMLSchema/index.html?url=callregistration.html

7

3.1.2.4 Select Minimum Cost Assignment
The available car offering the minimum cost of assignment (bid in the case of a distributed
dispatcher) is selected as the assigned car.

3.1.2.5 Publish Assignment
The selected minimum cost assignment is broadcast via the dispatcher interface to all registered
clients and includes (but is not limited to):

• the CallRegistration call event updated with the cost of assignment, where cost analysis is
made in terms of the cost-function that is specific to the algorithm used by the dispatcher

plus optionally:
• a CallAssignment event where the AssignedTo element is populated with the minimum-cost

assignment details.
• a TravelPlan if the dispatcher is configured to hide assignments so that the car will by-pass

an assigned call until it becomes the next landing call for the car.
• if the call was previously assigned to a different car the response will also include a

CallDeassignment event.

3.1.2.6 Alternative Path 1 - No Acknowledgement
The Assignment is only considered to be complete after a positive acknowledgement has been
received from the dispatcher responsible for the assigned car. If no acknowledgement or a negative
acknowledgement is received from an assigned client car then the call assignment will be repeated
with that car excluded.

http://www.std4lift.info/HTMLSchema/index.html?url=callregistration.html
http://www.std4lift.info/HTMLSchema/index.html?url=callassignment.html
http://www.std4lift.info/HTMLSchema/index.html?url=travelplan.html
http://www.std4lift.info/HTMLSchema/index.html?url=calldeassignment.html

8

3.2 Analysis Phase System Use Case – Cancel Call
A complimentary sequence diagram and use case story has been developed for the Cancel Call
system use case and can be viewed in the GDI Analysis report [5]. This use case is initiated when
the car approaches the call floor with a registered call for the floor. The use case offers alternative
paths for both direction and destination landing calls as well as car call cancellations. However, the
description text is omitted here for brevity.

Figure 3 Cancel Call

DispatcherInterface

(from
Domain
Objects)

Car arrives at
floor

Car arrives at
floor

Transition Manager

(from
Domain
Objects)

alt LandingCall OR CarCall cancelled?

[Call is LandingCall]

[Call is CarCall]

alt direction OR destination call

[DirectionCall]

[DestinationCall]

alt destination call?

[DestinationCall]

Cancel Call

LC Device/App

(from
Domain
Objects)

Car

(from
Domain
Objects)

LandingCallStatus = Cancelled()

Car call for destination floor()

LandingCallStatus = Cancelled()

LandingCallStatus = Answered()

CallCancellation Event
(CallID)

9

4 GDI DESIGN
The outputs of the design phase of the SDLC are:

- Sequence Diagrams
- Class library definitions

These will be the necessary inputs for the subsequent software development phase – in this case
development of the prototype.

4.1 Design Requirements
During the elaboration of the sequence diagrams some further design requirements are identified.

4.1.1 Publish and Subscribe Architecture
It is clear from the analysis sequence diagrams the assignment resulting from a request to travel
must be communicated not only to the source of the request (LC device/application) but also most
importantly to the assigned car (and possibly to all other cars as well). Until the assignment is made,
the cars are unaware that a call has been registered. So a mechanism is required that will notify the
car(s) without them having to continually poll the dispatcher service “just in case”. This mechanism
is provided by the Publish-And-Subscribe[13] messaging pattern. With this pattern, any number of
active elements (cars, LC devices, etc) may request (usually, though not uniquely, during start-up)
the GDI to publish a list of observable information sources against which they may submit a
subscribe request. The GDI will subsequently send a message to all subscribers each time an event
(usually a change of state) occurs associated with the information being observed (originally
described as the Observer software design pattern[14]).

4.1.2 Dispatcher Interface as a “Notice-Board”
An examination of the system use case sequence diagrams reveals that the messages being passed to
and from the GDI describe information events that are defined in terms of SEIS, which is a schema
that defines an information model. The GDI acts like a central notice-board where the elements of
the lift system simply post their current status, under specific subject headings. Coupled with the
publish-and-subscribe architecture, it becomes like a social-media notice-board where subjects of
interest can be “followed” (ie subscribed to). This is a very important property of the GDI since
none of the lift system elements is assuming to understand or maintain expectations of the operation
(or even the existence) of any other element which may receive its messages. In software
engineering this characteristic is referred to as ‘separation of concerns’[15].

The resulting interface is compatible with any dispatcher algorithm technique from dynamic
sectoring, to neural networks based on cost functions and therefore the inevitable debate is avoided
about which parameters must be passed in any call to the interface.

This mode of interaction allows an enormous amount of flexibility in the configuration and
component architecture of lift systems which may use the GDI. Figure 4 illustrates some of the
many possible configuration options.

Algorithm Behind Interface

The use case sequence diagrams in section 3.1.1 show the cars and landing call devices sending
messages to the dispatcher interface with the dispatcher algorithm (Heuristics + Cost Function)
located “behind” the interface, implying a simple function call from the algorithm to the
information maintained by the dispatcher interface. This configuration supports Master/Slave and
Simple Hierarchy interaction modes mentioned in [3].

10

Algorithm as Subscriber

In some configurations it may be more appropriate for the algorithm to be implemented simply as
another subscriber to the dispatcher interface (ie the Notice-Board) leaving nothing “behind” the
interface. This particular configuration allows the implementation of the distributed dispatcher (as
illustrated by Figure 2) and supports Assignment Bidding, Master/Slave and Simple Hierarchy
interaction modes mentioned in [3].

All Functionality Behind Interface

On the other hand in some circumstances it may be preferred to have all elements of the lift system
control software implemented as a single software component that sits “behind” the interface. In
this case the interface would operate simply as a reporting mechanism via which data logging and
status monitoring equipment could be connected. This configuration may support Master/Slave
and/or Simple Hierarchy interaction mode but this aspect will depend on the particular
implementation and the result will be proprietary.

11

Figure 4 Some Software Architecture Configurations

composite structure Software Architecture - Algorithm behind interface

Messaging Environment Behind Interface

Dispatcher Interface

Dispatcher

- Algorithm

Landing Call Stations

Car
{1}

Software Architecture - Algorithm behind interface

Dispatcher
Interface::
Information

Model

Function CallUpdate Events

Subscribe

Subscribe

1..*Update Events

1..*

composite structure Software Architecture - All functionality behind interface

Messaging Environment Behind Interface

Dispatcher Interface

Monitoring/Logging

Dispatcher

Dispatcher::All Dispatcher
Functionality

- Car Controllers
- Landing Call Station Controller

Software Architecture - All functionality behind interface

Dispatcher
Interface::
Information

Model

Subscribe

Update Events
Function Call

composite structure Software Architecture - Distributed Algorithm

Messaging Environment Behind Interface

Dispatcher Interface

Landing Call Stations

Car
{1}

Dispatcher

- Algorithm

Software Architecture - Algorithm as subscriber

Dispatcher
Interface::
Information

ModelUpdate Events

Subscribe

1..*Update Events

1..*

Subscribe

1..*Update Events

1..*

Subscribe

12

4.1.3 RESTful Interface
It has already been noted that messages to and from the GDI represent information events that are
defined in terms of SEIS. Therefore the messages do not make calls to specific functions of the
dispatcher, or any other aspect of operation of passenger lifts. Instead, the same set of standard
generic functions (called “methods”) can be requested from each supported node of the information
model.

These functions might be implemented, for example, as a ‘RESTful’[16] interface (using a variety
of available programming technologies and languages). Each node in the SEIS information model
against which the GDI exchanges event messages, becomes a networked resource (URI)[17]
potentially offering the same (though not necessarily all) four methods:
• POST
• GET
• PUT
• DELETE
Furthermore, nodes which have a multiplicity greater than 1 (i.e. lists) must support queries using
the properties and referenced links of the node.
N.B. The interface stores and retrieves the current state of the elements of the information model in
a similar manner to a relation database with tables having stored procedures, where the functions
would be named Create, Read, Update and Delete (CRUD)[18].

Another valuable characteristic of REST is its independence of any network topology (e.g. proxies,
gateways, firewalls, etc) so it is scalable. If required, a single instance of the GDI might therefore
support a number of groups of lifts, located in the same building, across a campus or a further
distribution where the dispatcher might be made available via the Internet as a cloud service.

The GDI prototype complies with all 6 REST constraints – see [16]. Additionally, access
permissions to each published node of the SEIS information model must be considered:

4.1.4 Access rights
The GDI should implement an overall security policy to restrict access (including subscription) to
authorised clients only. Access rights will be established during execution of the Registration use
case but this is not discussed further in the current paper since it is not specific to the task of
dispatching of lifts.

4.1.5 Create/Update access restricted to “owned” resources
The ability of a client to create and update resources via the GDI is limited to those resources that
are “owned” by the client. Thus a car may update any attributes of its own CarDynamicData or
CarStaticData but not those of another car.

Landing call devices may create (POST) a new LandingCall in the list but the resulting LandingCall
is owned by the dispatcher. A car may create/update (PUT) its own Bid element in a LandingCall.

It is a matter of internal design of the dispatcher whether LandingCalls are deleted or retained when
their Status becomes Cancelled and should be considered as part of the greater discussion of data
logging and retention[2].

5 PROTOTYPE DEMONSTRATOR
The purpose of the prototype is to demonstrate and validate the ability of the GDI design to support
the functionality that is particular to the task of lift system dispatching. To achieve this objective it
is necessary to build a complete and realistic environment in which the dispatcher interface can
operate. Such an environment needs to have access either to more than one real groups of

http://std4lift.info/HTMLSchema/index.html?url=cardynamicdata.html
http://std4lift.info/HTMLSchema/index.html?url=carstaticdata.html
http://std4lift.info/HTMLSchema/index.html?url=landingcalltype.html
http://std4lift.info/HTMLSchema/index.html?url=status1.html

13

operational lifts or to a variety of configurations of simulated groups, though with the current
prototype only one group will be active at a time. The different configurations allow the prototype
to be driven by both direction and destination passenger call stations and to demonstrate different
numbers of cars and patterns of passenger demand and floors served.

More general technical considerations, such as network performance, security, robustness, etc., are
addressed only in as much as it is necessary to achieve a realistic and operational prototype. A
thorough examination and design of such attributes must be addressed during an eventual
commercial product development, when inevitably, the currently available technologies and
standards are likely to have evolved or been superseded. The prototype environment is illustrated in
Figure 5.

Figure 5 Prototype Implementation

In an attempt to demonstrate that the prototype design is not dependent on specific technologies, the
selection of network protocols, software frameworks, programming languages, computer hardware
and operating system environments has been chosen to be as diverse and heterogeneous as possible.

5.1 Lift System Simulator
For this prototype, an accurate lift system simulation [8] of lift cars, passengers and call stations has
provided a realistic, flexible and permanently accessible solution.

The simulator allows car movement and door operation to be represented accurately and reported
against simulated time. Many different passenger demand profiles may be investigated, with the
possibility of passenger calls being registered through direction or destination call stations and
including a mixture of either type at different landings in the same building. Furthermore, and of
great importance to the prototype, the dispatcher algorithm, which controls the assignment of
landing calls may be specified as being provided via a system that is external to the simulator.

«executionEnvironment»
PrototypeExecutionEnvironment

«device»
Windows 10; x64

«deployment spec»
Simulation Configuration

tags
Language = XML

Elevate Simulator

«.DLL»
DispatchW Connector

tags
Language = C++

«device»
Raspberry-pi; MS UWP

GDI

tags
Language = C#; .Net

Dummy Algorithm

+ AllocateRandom(): boolean

tags
Language = C#-

Gateway app

tags
Language = Java

Instance: Landings:
Gateway app

- PortOffset = 00

Instance: AllCars:
Gateway app

- PortOffset = 01

WinSock

WinSock

CoAP
JSON

CoAP
JSON

internal algorithm

14

The following sections describe the various software components that have been developed to
complete the prototype environment.

5.2 Simulator Connector .DLL
The simulator provides the option to connect an external dispatcher algorithm via a single function
call to an external user-defined software component, where all relevant information is passed as
parameters of the call. The call is executed once during each simulated time interval.

However, for the purposes of demonstrating the prototype GDI it is more realistic to create the
impression of cars and call stations operating as independent, asynchronous processes and
communicating with the GDI through separate channels. Therefore, in this case the user
programmable connection software (“DispatchW Connector” component in Figure 5 - a Microsoft
Windows .DLL) has been developed which doesn’t itself contain the algorithm but instead simply
splits the information from the simulator function call, according to its subject matter, into separate
streams of data events (using Microsoft sockets API – WinSock[19]). Each stream is allocated a
different network port so that it appears to be communicating data from a separately connected
device. The prototype demonstrates this by splitting landing call station events into one stream (port
offset=00) and all car related events in a second stream (port offset=01). However, it is equally
possible, with no changes to the software code, to deploy a separate instance of the same Connector
component for each car (having port offsets = 01, 02 .. number of cars).

5.3 Landing Call-station and Car Gateway Application
In a further attempt at realism, a Gateway software application has been developed to undertake a
variety of transformations of the data events received from the simulator and similarly for
information being returned in the opposite direction. In order to demonstrate the “global”
applicability of the GDI we must consider that any part of the lift equipment interacting with it may
not be able to produce the necessary information, at the appropriate time or in a suitable format. It
may be that some manufacturers would integrate such a gateway with their equipment, thereby
maintaining the confidentiality of their own intellectual property. Others may prefer to delegate the
development of gateway software to a third party. A similarly flexible approach is specified for the
connection of lift systems for data monitoring by the National Standards Committee of the People’s
Republic of China[20].

For the prototype, a single Gateway application component has been developed which “listens” to
the events and then interacts in an appropriate manner with the GDI. A separate execution instance
of the Gateway application is launched to listen to each port (landings and cars) which is supplied
with data event messages by the simulator Connector, so reinforcing the impression of
asynchronous operation of the different active elements of the lift system. The gateway is written as
a Java application which allows it to run in a very wide variety of operating environments. It
communicates with the GDI using the Eclipse Californium CoAP library[21].

5.4 Global Dispatcher Interface Executable
The GDI itself is written in C# and executes on a separate computing device – a Raspberry Pi
running the Windows IoT core on the Universal Windows Platform (UWP).

The GDI software is based on a Windows .Net library implementation[22] of CoAP[23] –
Constrained Application Protocol – which is specifically designed to minimise processing and
communication demands and which:
• supports a RESTful interface and
• enables discovery of resources through the "/.well-known/” URI

15

• supports subscription to observable resources
• supports a number of message payload formats including JSON, XML and plain-text, which

may be used concurrently and interchangeably in a single implementation.

Whilst there are several available alternatives to CoAP, it was chosen because it offers the above
capabilities and because the computing power and network bandwidth available to such an
application, probably running in the lift motor room, are likely to be ‘constrained’. However, an
eventual commercial product may well employ a different open standard protocol.

CoAP messages have a similar format to HTTP messages used by web-browsers to access a web
server – each request includes:
• an ‘address’ (URI)[17] which identifies the exact location of a particular resource that is the

object of the request,
• an optional ‘query’ string which acts as a filter for the data of the resource and
• an optional data ‘payload’ which can carry data to or from the requested resource.

The GDI CoAP message payloads conform to the Standard Elevator Information Schema (SEIS)
where element tag names in the JSON content have been abbreviated into two-letter acronyms in
order to make more efficient use of the network resources – so for example the AssingedTo element
of the CallAssignment event message is abbreviated to “La” (i.e. Lift assigned).

Figure 6 Schema of CallAssignment event

The following is an example of a CallAssignment as the JSON payload of a CoAP message:

{"La":2,"St":1,"Fr":1, Dr":"UP","Tr":39838.7,"Dn":0.0,"Ct":0.0,"Rk":0, "Id":43029267}

NB SEIS offers two representations for many types of change in dynamic data:
• DynamicDataType contains the data relevant to a particular node in the information model.

• LogEventType contains just enough data to describe the change that has occurred so is
generally more efficient in data logging applications.

For messages directed to the REST interface it is most appropriate to use the DynamicDataType
representation as the destination resource is a node in the information model. Conversely, content of
responses to CoAP GET requests (including from observed resources) are more appropriately
formatted as LogEventType, since the observers do not offer a REST interface. Response messages
to subscribers do not expect a REST interface and so do not contain a method code (eg POST, etc).

A dummy dispatcher algorithm has been included, which appears to sit “behind” the GDI interface
but can be configured to be inactive in the case where a different dispatcher algorithm interacts as a
subscriber to the REST interface like any other element of the system (see Figure 4).

5.5 Global Dispatcher Sequence Diagram
Now that the components of the prototype have been defined, the design process continues by
developing the sequence diagrams illustrating their interactions. For the purposes of this paper it is

http://www.std4lift.info/HTMLSchema/index.html?url=dynamicdatatype.html
http://www.std4lift.info/HTMLSchema/index.html?url=logeventtype.html

16

only necessary to present an example of a design sequence diagram – direction call registration and
assignment (Figure 7). The UML model contains the full set of sequence diagrams [12].

Figure 7 Prototype - Direction Call Registration and Assignment

6 PROTOTYPE OPERATION - VALIDATION
Basic GDI operation can be demonstrated via the dynamic graphical display of the simulation
program, where passenger arrivals and resulting car movements in response to assigned passenger
landing calls can be observed. However, a more detailed examination of operation can be made
with the aid of a network “sniffer” application [24] which can detect and log the CoAP request and
response messages that replicate the sequence diagrams of the design (see example in Figure 8). As
noted in [3], it is normal for a group of lifts to be executing multiple instances of different system
use cases concurrently and asynchronously so the messages of the sequence diagrams will be
mingled but they can be separated in the sniffer log by filtering out specific landing call IDs and
message IDs.

Instance: Landings:
Gateway app

(from Prototype(CoAP))

«.DLL»

DispatchW Connector

Instance: AllCars:
Gateway app

(from Prototype(CoAP))

GDI

PortOffset=01

Dummy Algorithm

alt (Car2==AssignedTo)

PortOffset=00

Assign Direction CallPrototype (CoAP)

Landings
[observe]:CON(Floor, Direction, StartTime, Status, AssignedTo)

ACK()

Car2
[observe]:CON(Floor, Direction, StartTime, Status, AssignedTo)

Car1
[observe]:CON(Floor, Direction, StartTime, Status, AssignedTo)

ACK(UID)

ACK()

[/Group/RegisteredCalls/LandingCalls]:POST
(Floor, Direction, StartTime, Status=Registered):

ID

DirectionCallUpdate
(AssignedCar)

CarN
[observe]:CON(Floor, Direction, StartTime, Status, AssignedTo)

ACK()

ACK()

AllocateRandom(): boolean

DirectionCall(Unassigned)

17

Figure 8 Sniffer log of CoAP messages

Figure 9 Landing Call registration POST message

6.1 Example – Landing call registration and assignment messages
The following is an example of the interactions of call registration followed by call assignment for a
direction call (as per diagram Figure 7), as recorded in the sniffer log (see Figure 9):

NB The format of the sniffer log display window is:
• Top pane: List of messages in ascending time order (blue background) with one

message selected (grey background).
• Middle pane: Description of the properties and elements of the message selected in the top

pane.
• Bottom pane - Hexadecimal and ASCII dump of the message selected in the top pane.

Figure 9 shows, in the top pane, the landing call registration POST message which is CONfirmable
with a payload in JSON. In the middle pane, Opt #1 to Opt #3 specify the address of the node (URI)
to which the message is directed: “Group/RegisteredCalls/LandingCalls” and the Location-Query
parameters floor: 01 and direction: UP in Opt #5 and #6 respectively. The payload (ie the actual

18

JSON) has been manually highlighted in yellow in the bottom pane of the screenshot. Note that
there is no assigned lift at that point - “La”:00. Also, there is no Id: field in the payload since this is
a POST request message and so it is the responsibility of the GDI to generate a unique ID as it
creates a new element in the REST list.

Because the POST message was identified as CONfirmable, the GDI responds with an ACK to
confirm receipt (see Figure 10). The unique ID of the newly created LandingCall is included as
plain text (highlighted by hand in yellow in the bottom pane). Note that at this point the call is still
not yet assigned to a lift.

Figure 10 Dispatcher ACKnowledge of new LC including unique ID (highlighted in yellow)

The current version of the prototype includes a dispatcher service “behind” the GDI (see Figure 4)
so in this case the process of invoking and receiving the response of the dispatcher is non-standard
and implementation-specific as follows:

On receipt of a newly registered and unassigned landing call, the GDI invokes its internal algorithm
in a concurrent thread and then continues its standard operation to await further update/query
messages from registered clients or direct notification from the algorithm that the assignment has
been completed. In the current prototype the algorithm simply assigns cars at random and then
updates the internal information model of the GDI with the ID of the assigned car (this ID was
notified by the client car in a PUT message during registration). The Algorithm returns a value of
true to the GDI to indicate a successful assignment.

The GDI responds in the standard manner to this assignment update of the information model and
sends a new CON message with a JSON payload (see Figure 11, in particular “La”:1 highlighted) to
all subscribed observers of the node /Group/RegisteredCalls/LandingCalls where the updated
landing call, now assigned, is held in the information model (in this case there are two subscribed
observers – the Landings gateway and the AllCars gateway – see Figure 5). This last message is not
a POST since the destinations do not support REST interfaces.

http://www.std4lift.info/HTMLSchema/index.html?url=landingcalltype.html

19

Figure 11 Dispatcher informs any observing cars of assignment (highlighted in yellow)

Each of the observers, but particularly the assigned car and the landing call station (important in the
case of a destination call) will respond to the CON messages with ACKs. Network traffic could be
reduced in the case of multiple car gateway instances, if any instance handling cars that were not
assigned to the call were sent NONconfirm messages which do not require an ACK response.

The gateway and GDI components of the prototype can also be configured to generate copious logs
of the processing they execute to assist system test and debugging. This logging is not intended to
be enabled during normal operation.

7 PROTOTYPE FURTHER WORK
In the prototype, it is the simulator that manages internally the lifecycle of destination calls as they
evolve from landing calls to pseudo car calls, with the effect that the cars are only indirectly
controlled by the dispatcher. This is unlikely to reflect reality, where probably it will be the task of
the car gateway to translate the change of call status, from Registered to Answered, into the
generation of the appropriate car call and subsequently to status Cancelled. Therefore this aspect of
the remaining work involves changes to the Gateway app rather than the GDI itself. It may be
possible to circumvent the automatic behaviour of the simulator by directly monitoring passenger
arrivals (this information is available) and configuring the simulator as if for direction calls.

The second tranche of further work would see the implementation of a multi-instance distributed
dispatcher service handling assignments through bids in a sorted list. This is an important aspect of
the GDI validation, but also represents a major enhancement of the prototype.

The requirements and analysis refer to the role of a car’s TravelPlan in the interaction messages
passed via the GDI. This will be considered for inclusion as an observable resource in a future
version.

http://www.std4lift.info/HTMLSchema/index.html?url=travelplan.html

20

8 CONCLUSIONS
The design of a Global Dispatcher Interface has been presented using standard software design
methods. Starting with a set of analysis use cases and associated catalogue of requirements,
sequence diagrams illustrating the interactions between software components have been developed
to document the design of the GDI. A prototype demonstration environment has been built,
implementing the GDI design, interoperating via custom gateway software, with a realistic software
simulation of passengers and lifts in order to validate the design. The operation of the prototype in
an example of assigning a newly registered call has been discussed in detail and is evidenced with a
discussion of the resulting messages which are received and generated by the GDI. The ability to
support group dispatching of both direction and destination calls in a distributed software
architecture has been demonstrated through the working the prototype.

The material presented in this paper is part of an ongoing research and development project and has
yet to be implemented commercially. The author welcomes comments and questions, via the Editor,
regarding possible improvements, errors and omissions. The next iteration of the prototype will
explore and validate the potential offered by a distributed dispatcher interface.

End Note - Security
The introduction to this paper noted that the prototype, which is its subject, does not address general
requirements of the GDI that are not specific to the domain of lift systems dispatching. However, it
is important to stress in these concluding remarks that security must be placed at the forefront of
considerations when developing a commercial product embodying the GDI. Even where the GDI is
not connected directly to external networks, it is nonetheless capable of acting as an unintended
route for malicious agents to gain access to the lifts or other external systems. Therefore a full risk
assessment must be carried out, on a regular basis (extending throughout the product lifetime) and
any exposed risks mitigated by regular updates. Refer to CIBSE Guide D. 2020 Transportation
Systems in Buildings for a more detailed discussion [2].

21

REFERENCES
[1] G. C. Barney, G.C. and Al-Sharif, L. (2016) Elevator Traffic Handbook, Second edition,

Chap.12, Routledge, Abingdon UK, 2016, ISBN 978-1-138-85232-7.
https://doi.org/10.4324/9781315723600

[2] CIBSE-Ch14. (2020) . CIBSE Guide D. 2020 Transportation Systems in Buildings. Chap 14,
The Chartered Institution of Building Services Engineers.

[3] Beebe, J (2018). “Towards A Global Traffic Control (Dispatcher) Algorithm - Requirements
Analysis”, Transportation Systems In Buildings, University of Northampton, Available from:
http://journals.northampton.ac.uk/index.php/tsib/article/view/147.
http://dx.doi.org/10.14234/tsib.v2i1.147

[4] SDLC(2021) see Software development process, Wikipedia, Available from:
https://en.wikipedia.org/wiki/Software_development_process.

[5] Beebe, J (2021), “Analysis products”; https://dispatcher.std4lift.info/
[6] Sparx (2021), Sparx Systems Enterprise Architect. Available from:

https://www.sparxsystems.com/
[7] Software Prototyping (2021), see Software prototyping, Wikipedia, Available from:

https://en.wikipedia.org/wiki/Software_prototyping.
[8] Peters Research (2021). Elevate™ traffic analysis and simulation software. Available from:

https://www.peters-research.com/index.php/elevate/about-elevate.
[9] Beebe, J. (2021)"Standard Elevator Information Schema", https://www.std4lift.info/

.
[10] Alhir, Sinan Si.(1998), “UML in a nutshell”; pp85-94 “Sequence Diagrams”, O’Reilly &

Associates, Inc., Sebastopol CA, USA, 1998, ISBN 1-56592-488-7.
[11] Bitner, K and Spence, I. (2008), Use Case Modelling, pp196, “What is a Scenario”,

Addison-Wesley, London, 2008, ISBN 02011709139.
[12] Beebe, J (2021), “Design products”; https://dispatcher.std4lift.info/GlobalDispatcher-

PrototypeDesign.pdf
[13] Publish-Subscribe (2021), “Publish–subscribe pattern”, Wikipedia, Available from::

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
[14] E. Gamma; R. Helm; . Johnson; J. Vlissides (1994). Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley ISBN 0-201-63361-2.

[15] SeparationOfConcerns (2021). Separation of concerns. Wikipedia, Available from:
https://en.wikipedia.org/wiki/Separation_of_concerns

[16] REST (2021) Wikipedia. Representational State Transfer [Internet]. Wikipedia, Available
from: https://en.wikipedia.org/wiki/Representational_state_transfer

[17] URI (2021) Wikipedia. Uniform Resource Identifier. Wikipedia, Available from:
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

[18] CRUD (2021) Wikipedia. Create, read, update and delete. Available from:
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

https://doi.org/10.4324/9781315723600
http://journals.northampton.ac.uk/index.php/tsib/article/view/147
http://dx.doi.org/10.14234/tsib.v2i1.147
https://en.wikipedia.org/wiki/Software_development_process
https://dispatcher.std4lift.info/
https://www.sparxsystems.com/
https://en.wikipedia.org/wiki/Software_prototyping
https://www.peters-research.com/index.php/elevate/about-elevate
https://www.std4lift.info/
https://dispatcher.std4lift.info/GlobalDispatcher-PrototypeDesign.pdf
https://dispatcher.std4lift.info/GlobalDispatcher-PrototypeDesign.pdf
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://archive.org/details/designpatternsel00gamm/page/293
https://archive.org/details/designpatternsel00gamm/page/293
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-63361-2
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

22

[19] WinSock (2021), Microsoft, “Winsock Network Protocol Support in Windows”. Available
from : https://docs.microsoft.com/en-us/windows/win32/winsock/network-protocol-support-
in-windows

[20] PRC (2021) National Standards Committee of People's Republic of China. GB/T 24476-2017
- Specification for internet of things for lifts, escalators and moving walks. 2018. Available
from: https://www.chinesestandard.net/PDF/English.aspx/GBT24476-2017

[21] Californium (2021), Eclipse Foundation, “Eclipse Californium”. Available from:
https://www.eclipse.org/californium/

[22] Waher, P. (2018), Mastering Internet of Things, Chap 10 The Controller, Packt Publishing
Ltd. (www.packtpub.com),ISBN 978-1-78839-748-3.

[23] CoAP (2014). Internet Engineering Task Force (IETF), “The Constrained Application
Protocol (CoAP)”, RFC 7252. Available from: https://tools.ietf.org/html/rfc7252

[24] Wireshark (2021), Wireshark.org. Available from https://www.wireshark.org/

https://docs.microsoft.com/en-us/windows/win32/winsock/network-protocol-support-in-windows
https://docs.microsoft.com/en-us/windows/win32/winsock/network-protocol-support-in-windows
https://www.chinesestandard.net/PDF/English.aspx/GBT24476-2017
https://www.eclipse.org/californium/
http://www.packtpub.com/
https://tools.ietf.org/html/rfc7252
https://www.wireshark.org/

	1 Introduction
	2 Some Relevant Terms
	3 GDI ANALYSIS
	3.1 Example of Analysis Phase System Use Case - Assign Call
	3.1.1 Assign Call -Sequence Diagrams
	3.1.2 Assign Call – Use Case Story (detailed description)
	3.1.2.1 Register Call
	3.1.2.2 Calculate Cost
	3.1.2.3 Scenario 1 - Distributed Dispatcher
	3.1.2.4 Select Minimum Cost Assignment
	3.1.2.5 Publish Assignment
	3.1.2.6 Alternative Path 1 - No Acknowledgement

	3.2 Analysis Phase System Use Case – Cancel Call

	4 GDI Design
	4.1 Design Requirements
	4.1.1 Publish and Subscribe Architecture
	4.1.2 Dispatcher Interface as a “Notice-Board”
	4.1.3 RESTful Interface
	4.1.4 Access rights
	4.1.5 Create/Update access restricted to “owned” resources

	5 Prototype Demonstrator
	5.1 Lift System Simulator
	5.2 Simulator Connector .DLL
	5.3 Landing Call-station and Car Gateway Application
	5.4 Global Dispatcher Interface Executable
	5.5 Global Dispatcher Sequence Diagram

	6 Prototype Operation - Validation
	6.1 Example – Landing call registration and assignment messages

	7 Prototype Further Work
	8 Conclusions
	End Note - Security

