
1 
 

Analytical RTT Estimation of a 3-D Elevator System by Exact Stop 
Positions - Extension to Multi-floor and Non-uniform Population 

Applications 

Albert So 

Faculty of Arts, Science and Technology, The University of Northampton, U.K., 
alberttpso@gmail.com 

 

Abstract 

3-dimensional (3-D) elevator systems will be the industrial trend. Traditionally, designers first 
perform a calculation on up-peak traffic analysis to get an overall concept and then proceed to 
carry out computer simulation to obtain details under different traffic patterns. This tradition is 
still maintained throughout the world. Previously, a “Scanner” approach together with a 
sophisticated origin/destination matrix, were adopted to calculate the round trip time (RTT) of 
the 3-D system. In a more recent article, by using Order Statistics, a series of repeatable stops 
in a 3-D system was broken down into several series of non-repeatable stops to estimate the 
RTT. However, a uniform population distribution of all potential stops and a single floor service 
were assumed in that latest article. The development in this article has been built upon the two 
previous articles to extend the up-peak RTT calculation to a more generic approach, including 
non-uniform population distribution of stops, and multi-floor applications. The latter also deals 
with the existence of multiple vertical risers. This new development has been validated by 
Monte Carlo simulation, which may be the most general approach to calculate the up-peak RTT 
of a truly 3-D elevator system, and to be followed by computer simulation to implement the 
traditionally industrial practice in the three dimensional world. 

Keywords: Traffic analysis, 3-dimensional elevator system, round trip time, non-uniform 
population, multi-floor service. 

 

1 INTRODUCTION 

Following the successful development of the world’s first prototype of a 2-dimensional (2-D) 
elevator in Germany [1], 2-D or even 3-D elevator systems will soon become popular around 
the world [2] because buildings tend to become taller and wider. The author, with others, first 
developed methods to calculate the round trip time (RTT) of a 2-D elevator system [3-5]. 

Then, it comes to a 3-D elevator system. Fig. 1 and Fig. 2 show the configuration where a 3-D 
elevator system is considered feasible [6]. During an up-peak period, passengers arrive at the 
main terminal of a building where there are a number of cars available, say five, E1 to E5, as 
shown in the Fig. 2. A destination group control system (DGS) is to be adopted. The system 
gathers passengers whose destination is the same floor together and signals them to board a 
designated car. This is because it is technically more efficient for an elevator car to move 
horizontally rather than vertically. 
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After the car is fully loaded, it leaves the main terminal and enters the vertical riser where there 
could be several vertical hoistways. The minimum number is three, one for up, one for down 
and one spare for either direction of movement in the case of emergency. The advantage of one 

Figure 1 A typical 3-dimensional elevator system 

Figure 2 Zoomed view of the common hoistways 
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hoistway for one direction of movement is to avoid jamming along any hoistway. Once the car 
gets to the destination floor, the ith floor, it travels to the first potential stop, R(i, 1, 1) via a 
bridge linking every floor to the vertical hoistways. If some passengers want to exit the car at 
this stop, the doors will be opened. Then, the car travels to the second stop.  

The “Scanner” model is illustrated by Table 1. Without loss of generality, every floor consists 
of M × Q (M along the x-axis, i.e. the columns, and Q along the y-axis, i.e. the rows) potential 
stops. A potential stop is a real physical stopping position of the elevator with landing doors. 
The scanning path is along a column first and then incremented by one row. 

Therefore, the first potential stop is indicated by R(i, 1, 1), second by R(i, 1, 2), until the Qth 
stop by R(i, 1, Q). Here, Q is called the scanned sequence number while (i, 1, Q) is the physical 
co-ordinates of that stop. The (Q+1)th stop is indicated by R(i, 2, Q) and the (Q+2)th stop by 
R(i, 2, Q-1) and so on until the last potential stop indicated by R(i, M, Q). Without loss of 
generality, it is assumed that M is always an odd integer, meaning that the last stop is always at 
the other end of the diagonal with R(i, 1, 1) at one end. A potential stop on a floor is equivalent 
to a floor of a 1-D system in a building in terms of the scanned sequence number. Each potential 
stop, being a real and physical stop, represents a group of occupants whose offices are in the 
vicinity of, i.e. within a reasonable walking distance from, the potential stop. In the previous 
articles, all stops were assumed to be uniformly populated. For the rest of this article, “R” of 
each stop will be neglected and only the coordinates are indicated. 
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Table 1 Stops arrangement and the sequence of serving the stops (scanner method) 

Q Q+1 3Q 3Q+1 5Q . . . . (M-2).Q+1 M.Q 

Q-1 Q+2 3Q-1 3Q+2 5Q-1 . . . . (M-2).Q+2 M.Q-1 

.  . . . . . .  . . . . 

. . . . . . . . . . . 

2 2Q-1 2Q+2 4Q-1 4Q+2 . . . . (M-1).Q-1 (M-1).Q+2 

1 2Q 2Q+1 4Q 4Q+1 . . . . (M-1).Q (M-1).Q+1 

 

Although the scanning path is based on Table 1 meaning that the controller always handles a 
stop with a scanned sequence number smaller than that of the next stop. But once a series of 
real stops has been confirmed, the actual path of motion of the elevator car is according to that 
shown in Fig. 3. The solid line in Fig. 3 shows the scanning route with incremental scanned 
sequence number while the dotted line shows the physical route of movement. It can be seen 
that there could be up to one 90o turn from the ith stop to the next stop, i.e. the jth stop, i and j 
being the scanned sequence numbers. When two consecutive stops happen to be on the same 
row or same column, no 90o turn is necessary. The simulation considers the kinematics of the 
car to travel from one stop stationary to the next stop stationary. But in the calculation, for 
simplicity, an ideal motion involving constant acceleration, rated speed and deceleration is 
assumed. 

In the previous article [6], a probability matrix from any origin stop, i.e. the “s” stop, to the 
destination stop, i.e. the “e” stop, on the ith floor, was generated as shown in Table 2.  

 

  

Figure 3 Physical path of motion of the elevator car 
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Table 2 The journey probability matrix at a floor (the ith floor in this case) 

  1 2 3 ... MQ-2 MQ-1 MQ 

1 0 P(i , J12) P(i , J13) ... P(i , J1(MQ-2)) P(i , J1(MQ-1)) P(i , J1(MQ)) 

2 P(i, J21) 0 P(i , J23) ... P(i , J2(MQ-2)) P(i , J2(MQ-1)) P(i , J2(MQ)) 

3 P(i , J30) 0 0 ... P(i , J3(MQ-2)) P(i , J3(MQ-1)) P(i , J3(MQ)) 

... ... ... ... 0 … ... ... 

MQ-2 P(i , J(MQ-2)1) 0 0 ... 0 P(i , J(MQ-2) (MQ-1)) P(i , J(MQ-2)(MQ)) 

MQ-1 P(i , J(MQ-1)1) 0 0 ... 0 0 P(i , J(MQ-1)(MQ)) 

MQ P(i , J(MQ)1) 0 0 ... 0 0 0 

 

The reason why most entries below the “(1, 1) - (MQ, MQ)” diagonal are equal to zero is that 
the car only moves forward along the scanning route with incremental scanned sequence 
numbers and the car cannot move to its current position. Only after the last passenger has been 
served and the car gets vacant that the car returns to R(i, 1, 1) to get into the vertical hoistways 
to express down the main terminal. That explains why entries along the first column are non-
zero. The average RTT of that particular floor is then estimated by multiplying the probability 
of a journey from the s stop to the e stop by the journey time needed without any stop in between 
and then summing up all such products of all stop pairs on the ith floor, as shown in Eq. 1.   
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where ciU )(  is the population of room “c” (either “s” or “e”) on the ith floor, )0,0,(iU  is the 
total floor population of the ith floor, and P is the number of passengers entering the car at the 
main terminal. 
 
This approach can really provide a solution to the computation of the RTT of such a 3-D system. 
However, there are two shortcomings. First, the matrix is well too complicated with more than 
(1/2)M2Q2 meaningful elements, in particular, when M and Q are relatively large. Second, Eq. 
1 lumps all expressions together into one expression while the designers cannot fully understand 
what happens inside. Thus, variation of parameters to modify a design during the design stage 
becomes difficult. 
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After this model was developed, further work was carried out on using graphical methods in 
order to resolve potential collision between consecutive elevators travelling along the same 
hoistway [7].  Some further work on finding the optimal route of a combination of car-calls on 
the destination floor by using deep reinforcement learning involving artificial neural networks 
(ANNs) was also conducted [8]. 

 

2 RTT COMPUTATION BY EXACT STOPPING LOCATION IDENTIFICATION 

To avoid handling such huge and complicated probability matrix and to help designers follow 
a step-by-step process by having a clear understanding what happens in the whole process of 
estimation and in the mechanism to perform sensitivity analysis or vary design parameters, like 
that in the traditional process for a 1-D system, a new method based on a branch of mathematics, 
Order Statistics, was developed [9]. In that article, the assumption of a uniformly populated 
building was also made to simplify certain derivation of formulae.  

In the conventional up-peak (uniform population distribution) traffic calculation of a 1-D 
system, as shown in Eq. 2, H (highest reversal floor), L (lowest arrival floor) and S (expected 
number of stops in one round trip) are usually non-integral. That does not matter in estimating 
the RTT of a 1-D system. But in a 3-D system, the RTT is very sensitive to the exact stopping 
positions because the scanning route is not the same as the moving route of the elevator, as 
shown in Fig. 3.  
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where
 = highest stop of reversal on average;  

 = lowest floor of the first stop on average;
 = expected number of stops;
= time of one floor jump under rated speed; 
 = number of floors above main 

v

H
L
S
t
N terminal;

 = performance time;   = number of passengers in the elevator car;
 passenger transfer time.p

T P
t =

 

The reason why non-integral values exist is that they are statistical figures. For P number of 
passengers inside a car, there can be one stop, two stops, up to P number of stops, even within 
one round trip. These are termed “repeatable stops”. To accurately calculate the time taken for 
one round trip in a 3-D system, one needs to identify the exact stopping positions and the exact 
number of stops within each trip because time taken for the car to move between stops is very 
sensitive to the exact location of stops. This is based on finding out the average travel time 
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between non-repeatable stopping positions and the final RTT is the weighted average of all of 
them. When stops are non-repeatable, and hence integral numerically, stopping positions can 
be exactly defined and traced. The most recent article [9] provides a solution to break down a 
series of repeatable stops into several series of non-repeatable stops while the RTT of each series 
of non-repeatable stops can be calculated precisely and accurately. Then, the total RTT can be 
calculated by the sum of all such “non-repeatable” RTTs weighted by their respective 
probability density functions. It was shown that the RTT obtained was identical to each other 
by the two approaches, i.e. “Monte Carlo simulation” with repeatable stops and “Calculation 
based on Order Statistics” with non-repeatable stops. 

In [9], two assumptions were made, first all potential stops being uniformly populated and 
second, only one floor being served in every round trip during the up-peak period. In this article, 
such two assumptions are removed and the method “Calculation based on Order Statistics” can 
be extended to a more generic 3-D up-peak traffic analysis. 

 

3 RTT ESTIMATION OF A 3-D ELEVATOR SYSTEM BY WEIGHTED SUM OF 
RTT’S WITHOUT REPETITION (NON-UNIFORM POPULATION AND 
MULTIPLE FLOORS) 

The method adopted in [9] is briefly explained here for completeness and quick reference. 
Conceptually, P number of passenger stops with repetition may actually be viewed as consisting 
of a combination of 1 number of stop, 2 number of stops without repetition, 3 number of stops 
without repetition, until P number of stops without repetition. Here, “with repetition” means 
that the exact physical number of stops of the P passenger may be any number equal to or 
smaller than P. But “without repetition” means that the number of physical stops is exactly 
equal to P. One important assumption here is that all stops must be equally likely, i.e. uniform 
population density of stops. 

For example, suppose N = 6 and P = 3. In every up-peak journey, there could be up to NP 
possible combinations of stops for the P passengers, i.e. 63 = 216. If these combinations are 
arranged in an ascending order, there could be three types where the first digit represents the 
destination of the first passenger, second digit the second passenger, and so on, and they are 
shown below. 

i)  one stopping position only, say “2,2,2”, “3,3,3” or “6,6,6” etc. and there are 6 
possibilities and they are all considered “one stop without repetition”; 

ii) two stopping positions, say “1,1,2”, “2,5,5”, “4,4,6” etc.; “1,1,2” may come from 
“2,1,1”,  “1,2,1” or “1,1,2”, and they are all considered “two stops without repetition”; 
both “1,1,2” and “2,1,1” refer to “1,2” without repetition; 

iii) three stopping positions, say “1,2,3”, “2,4,5” etc.; “1,2,3” may come from “3,2,1”, 
“3,1,2”, “2,3,1”, “2,1,3”, “1,3,2” or “1,2,3”, and they are all considered “three stops 
without repetition”, i.e. “1,2,3”. 

All possibilities of types (i), (ii) and (iii) should sum up to 216. The next step is to estimate the 
probability density function of each type of stops without repetition. Let’s denote SN

n(k) as the 
series of stopping positions in an ascending order, where N = total number of possible floors or 
stops allowed, n = types of stops, n = 1, ..., P, and k = the passenger stopping sequence number 
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within the series, k = 1, ..., n. Since the 3-D system has already been linearized into a 1-D system, 
N could refer to the total number of possible stops or possible floors. For example, in “2,5,5” 
of type 2, S6

2(1) = 2nd floor and S6
2(2) = 5th floor, and similar for others because “2,5,5” is one 

particular combination of “2,5”. And Pr(SN
n), shown in Eq. 3, is the probability density function 

of the nth type of stops which is equal to the number of all possible combinations of n stops 
without repetition divided by NP.   
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In a 3-D system, the calculation of RTT in Eq. 2 is not directly applicable because the RTT is 
very sensitive to actual stopping positions due to the nonequivalence between the scanning 
route and the moving route. Moreover, H, L and S are all non-integral in Eq. 2, making the 
estimation of journey time between stops impossible in a 3-D system.  

The P stops with repetition can be broken down into series of 1 (the SN
1 scenario), 2 (the SN

2 
scenario), 3, ..., up to P (the SN

P scenario) stop(s) without repetition. And the exact RTT of each 
type of stops without repetition, for 1, 2, 3, ..., P stops, can be analytically estimated as follows. 
And the final RTT , RTT(all), of the P stops with repetition can be found by the weighted sum 
of all these types of stops, as shown in Eq. 4. 
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To compute RTT(SN
n), as the round trip is extended to multiple floors in this article, the 

following components are to be considered. The n stops consist of the 1st, 2nd, ..., kth, 
(k+1)th, ..., (n-1), nth stop. i, j ∈ {1, ..., M.Q} are scanned sequence number of possible stops 
on the horizontal plane of one or more floors. If two floors are included in one round trip, N 
becomes 2MQ. Physically, an elevator car must depart from the kth stop within the n stops 
( physically the ith stop at (x(i) , y(i) ) to the (k+1)th stop within the n stops ( physically the jth 
stop at (x(j) , y(j) ).    

The actual path of motion from the ith stop to the jth stop is shown in Fig. 3, i.e. from (x(i) , 
y(i)) to (x(j) , y(i)), and finally  to (x(j) , y(j)). Total time of such a journey between two 
consecutive passenger stops in our simulation is the sum of the following components with 
simplification, altogether called tij (x(i) , y(i) , x(j) , y(j)). But in a practical sense, the 
comfortable kinematics of the horizontal motion of the car has to be taken care of where jerk, 
acceleration and deceleration have to be considered. 

i) tc  : door closing time; 
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ii) 0.5 th(1) : time for horizontal acceleration for a distance usually equal to half of the 
separation, df, between two consecutive physical stops on the floor;  

iii) (|x(j) - x(i)| - df ) / vh or (|y(j) - y(i)| - df) / vh : time for horizontal rated speed operation where 
vh is the horizontal rated speed of the elevator car; in our simulation, the elevator car always 
moves along a row first and then along a column; 

iv) 0.5 th(1) : time for horizontal deceleration to the intermediate stop to change its direction 
of motion; 

v) tTHH : time for the elevator car to turn 90o between two horizontally perpendicular hoistways; 

vi) 0.5 th(1) : time for horizontal acceleration for a distance usually equal to half of the 
separation, df, between two consecutive physical stops on the floor;  

vii) (|x(j) - x(i)| - df ) / v or (|y(j) - y(i)| - df) / v : time for horizontal rated speed operation where 
v is the horizontal rated speed of the elevator car; 

viii) 0.5 th(1) : time for horizontal deceleration to the final stop; 

ix) to : door opening time. 

If both origin and destination stops are along the same row or column, half of the steps above 
can be cancelled. Without loss of generality, a 2-consecutive-floor round trip is considered 
where there are nL real stops on the lower floor and nH real stops on the higher floor, nL + nH = 
n made by the car within a particular round trip. But this method is not limited to a round trip 
to two floors only and these multiple floors may not necessarily be contiguous. The estimation 
of total RTT involves five types of journeys.  

i) The first type is from the main terminal at the ground floor to the first stop on the lower 
floor, called a “riser-up” journey.  

ii) The second type is between each pair within the nL stops on the lower floor, i.e. 1st to 
2nd, 2nd to 3rd, ..., (k-1)th to kth, kth to (k+1)th, ..., (nL-1)th to nLth, called “intrafloor” 
journeys on the lower floor. 

iii) The third type is from the nLth stop on the lower floor to the first stop on the upper floor, 
called an “interfloor” journey. That involves a travel from the nLth stop to a riser, from 
the riser at the lower floor to the riser at the higher floor, and finally from the riser to 
the first stop on the upper floor. The original design involves one column of vertical 
hoistways only, close to the main terminal. And in this article, another option involving 
two columns at two opposite corners along the diagonal of the building is also 
considered. 

iv) The fourth type is between each pair within the nH stops on the higher floor, i.e. from 
the first stop on the upper floor, until the last stop, i.e. the nHth stop on the higher floor, 
also a type of “intrafloor” journeys. 

v) The fifth type is from the nHth stop on the higher floor to the main terminal at the ground 
floor, called a “riser-down” journey. 

Computationally, (i) is equivalent to (v), and (ii) is equivalent to (iv). Although only two floors 
are considered, there is no reason why the method cannot be extended to three or more floors 
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by breaking up n into more fractions. But practically, it takes long for an elevator car to move 
vertically between floors and therefore, the efficiency is rather low if more than two floors are 
involved in one round trip. The details are shown below. Derivation of the following equations 
may refer to [9]. 

 

a) Riser-up Journey (truj) to the lower floor 

The first stop can be any one of the first (N = M.Q) - nL + 1 possible stops on the floor along 
the “Scanner route”. The travel time consists of the following elements: 

i)  from main terminal to the lower floor level along the riser, which is neglected in this 
study as it is always a constant for all round trips involving this lower floor as the first 
destination; 

ii) rst : from the riser at the lower floor level to the stop (x(1) , y(1)) closest to the riser  
including acceleration and deceleration;  

iii) tTHH : stopping time at stop (x(1) , y(1)) to change direction of travel, preparing for further 
journey to the first passenger stop; 

iv) tij : journey time from (x(1) , y(1)) to the first passenger stop; this part is neglected if 
(x(1) , y(1)) is the first passenger stop by itself. 

The probability of each stop is simply 1/(N-nL+1). Hence the weighted sum of this journey, truj, 
is given by Eq. 5. 

1

1

1 ( (1), (1), ( ), ( ))
1

LN n

ruj THH
Li

t rst t tij x y x i y i
N n

− +

=

= + +
− +∑       (5) 

 

b) Intrafloor journey (tifj) on the lower floor 

If there is only one passenger stop for the floor, i.e. nL = 1, this part is neglected. So, the 
computation of tifj is only meaningful if nL = 2 or more.  It starts from the first passenger stop 
to the second passenger stop and then from the second to the third and finally to the nLth stop. 
Let’s assume the a th passenger stop is the ith stop and the (a+1) th stop is the jth stop, i and j 
being the scanned sequence number on the lower floor, and a = 1, ..., nL-1. The travel time from 
the i th stop to the j th stop, is simply given by tij(x(i) , y(i) , x(j) , y(j)).  But the probability is a 
bit more complicated. 

Before the ith stop, there are (a-1) stops distributed within (i-1) possible stops and after the jth 
stop, there are (nL-(a+1)) stops distributed within the remaining (N-j) stops. Total possible 
combinations =   (i-1)C(a-1) · (N-j)C(nL-(a+1)). The ath stop can correspond to either of i = a , i=a+1, 
i = a+2 until i = a+N-nL while the (a+1)th stop can correspond to either one of j=a+1, j=a+2 
until j=a+N-nL+1. Hence, the average intrafloor journey time, tifj (a , a+1)from the ath stop to 
the (a+1)th stop is given by Eq. 6. 
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The intrafloor journey time for other pairs can be handled similarly. 

 

c) Interfloor journey from the lower floor to the higher floor (titfj) 

i) tij: journey from the last passenger stop, i.e. the nLth stop, to either the first possible stop 
(x(1) , y(1)) or (x(MQ) , y(MQ)) depending on the location of the vertical riser; this part 
is neglected if (x(MQ) , y(MQ)) is the last passenger stop on the lower floor while the 
riser close to (x(MQ) , y(MQ)) is chosen; 

ii) tTHH: stopping time at either (x(1) , y(1)) or (x(MQ) , y(MQ)) to change direction of travel; 

iii)  rst: journey from either (x(1) , y(1)) or (x(MQ) , y(MQ)) to the riser on the lower floor, 
both being the same; 

iv) tlfhf: time to travel from the lower floor level to the higher floor level along the riser, 
including acceleration, rated speed movement and deceleration; this is computed by tTHV 
(stopping time at the riser to change from a horizontal movement to a vertical 
movement), tv(1) (acceleration and deceleration time along a vertical hoistway) and vv 
(vertical rated speed); 

v) rst: journey from the riser at the higher floor level to either (x(1) , y(1)) or (x(MQ) , 
y(MQ)) on the higher floor; 

vi) tTHH: stopping time at either (x(1) , y(1)) or (x(MQ) , y(MQ)) to change direction of travel; 

vii) tij: journey from the first possible stop on the higher floor, either (x(1), y(1)) or (x(MQ) , 
y(MQ)) to the first passenger stop on the higher floor, depending on the location of the 
rise; this part is neglected if either (x(1) , y(1)) or (x(MQ) , y(MQ)) is the first passenger 
stop by itself. 

The weighted sum of this journey, titfj, is given by Eq. 7. There are two different expressions, 
depending on the exact location of the riser used. If the riser close to (x(1) , y(1)) is the only 
riser, there is no need to change the scanned sequence numbering process. That shown in Table 
1 is good enough. However, if the second option of installing another vertical riser close to 
(x(MQ) , y(MQ)) on the lower floor is adopted, the scanning and numbering process on the 
higher floor has to be reversed, i.e. i is replaced by (N = MQ) - i + 1. 
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d) Intrafloor journey (tifj) on the higher floor 

The whole procedure is similar to that in sub-section (b) provided that the scanning and 
numbering process is proper. Again, the time taken to travel from the ath passenger stop to the 
(a+1)th passenger stop is shown in Eq. 8. 
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The intrafloor journey time for other pairs on the higher floor can be handled similarly. 

 

e) Riser-down journey (trdj) from the higher floor 

This is similar to (a). The last passenger stop can be any one of the last (N = M.Q) -  nH + 1 
possible stops. The travel time consists of the following elements: 

i)  tij : journey from the last passenger stop back to (x(1) , y(1)); 

ii)  tTHH : stopping time at stop (x(1) , y(1)) to change direction of travel, preparing for 
further journey to the riser; 

iii) rst : from stop (x(1) , y(1)) to the riser including acceleration and deceleration; 

iv) from the higher floor back to the main terminal along the riser, which is neglected in 
this study as it is always a constant for the same destination floor. 

The probability of each stop is simply 1/(N-nH+1). Hence the weighted sum of this journey, trdj, 
is given by Eq. 9. 

1 ( ( ), ( ), (1), (1))
1
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rdj THH
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= + +
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f) Final RTT 

After the average RTT of each of the k stops without repetition, k = 1, 2, ..., P, has been 
computed, the final RTT can simply be computed by using Eq. 4. 

The next section is a demonstration on two cases, namely multiple floor application and non-
uniform population. The vertical travel time between the ground floor and the first destination 
floor or between the last destination floor and the ground floor is neglected because time for 
both vertical travels, up and down, is constant for all scenarios. The elevator car is always 
assumed to start at the riser on the first destination floor and end at the riser of the last 
destination floor, i.e. the departing floor. 

 

 

4 CASE DEMONSTRATION 

Two cases are demonstrated, one on multi-floor round trips and one on non-uniform population 
distribution for easy understanding, to illustrate how the “calculation” method can be applied 
to the analytical traffic analysis of a general 3-D elevator system. For both cases, the time for 
the elevator car to travel from the ground floor to the first destination floor along the vertical 
riser and that from the final destination floor, i.e. the departing floor, back to the ground floor 
along the same or a second riser are neglected because both of them are constant under all 
scenarios. Also, since passenger transfer time is also constant once the rated car capacity has 
been fixed, it is also neglected. However, with the existence of the second group of vertical 
hoistways, time to travel on the ground floor from the second riser back to the first riser must 
be considered because the main terminal is always assumed to be close to the first group of 
vertical hoistways as shown in Fig. 1 and 2. Table 3 shows parameters used in the calculation. 

 

Table 3 Values of parameters for simulation and calculation 

Description Symbol Value Description Symbol Value 
horizontal 90o transition time tTHH 6 s door opening time to 2 s 
vertical 90o transition time tTHV 10 s door closing time including 

dwell time 
tc 6 s 

rated vertical speed vv 1 m/s travel time between riser and  
stop R(i, 1, 1) 

rst 10 s 

rated horizontal speed  vh 2 m/s vertical acceleration and 
deceleration time 

tv(1) 9 s 

horizontal acceleration and 
deceleration time 

th(1) 8 s distance traveled during 
acceleration and deceleration 

dh(1) 8 m 

distance between stops along a 
column 

dfc = dh 10 m distance between stops along a 
row 

dfr = dh 10 m 

floor height dv 5 m    
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4.1 Multiple Floor Application 

Three floors of a building, namely 5/F, 6/F and 7/F respectively, grouped as one zone is served 
by one elevator car with a rated capacity of 5 passengers. Overall, there are (M = 3 along each 
row) x (Q = 2 along each column) = 6 stops on each floor. The physical addresses of the six 
stops are (i , 1 , 1), (i , 1 , 2), (i , 2 , 1), (i , 2 , 2), (i , 3 , 1) and (i , 3 , 2) respectively, with i = 5, 
6 or 7. The possible number of passengers at each stop is 5, i.e. every stop uniformly populated 
while the total population of the three floors is 6 (stops per floor) x 5 (passengers per stop) x 3 
(floors) = 90. In other words, there is a possibility that all five passengers in one round trip exit 
at the same stop, though the chance being very remote. 

The scanned sequence number is from “1” to “3 x 6 = 18”. There are two different designs with 
the vertical riser, single and dual respectively. For single design, one group of vertical hoistways 
close to stop (1 , 1) of every floor is installed. For dual design, besides the first group, another 
group is installed close to stop (3 , 2). Hence, for single design, the scanned route at every floor 
is always from (1 , 1) to (1 , 2) to (2, 1), ...., until (3 , 2). That means, after the last passenger of 
that particular floor has alighted from the elevator, the elevator has to travel back to (1 , 1) and 
then enter the single vertical riser to get to a higher floor. At the highest floor, after all 
passengers have alighted from the elevator, it has to travel back to (1 , 1) and take the same 
vertical riser back to the ground floor. 

For dual design, after the last passenger of the 5/F has alighted from the elevator, it will travel 
to (3 , 2) and take the second riser to a higher floor, either to the 6/F or to the 7/F depending on 
the destinations of the remaining passengers. At 6/F, the scanned sequence is reversed, i.e. from 
(3 , 2) to (3, 1) to (2 , 1) to (2 , 2) to (1 , 2) and then to (1 , 1). At 7/F, the scanned sequence is 
restored back to normal, same as that at 6/F. Table 4 shows the physical address of each stop 
and its corresponding scanned sequence number. 

 

Table 4 Physical addresses vs scanned sequence numbers for both vertical riser design 

Physical 
address 

Sequence 
number of 
single riser 

Sequence 
number of 
dual risers 

Physical 
address 

Sequence 
number of 
single riser 

Sequence 
number of 
dual risers 

(5 , 1 , 1) 1 1 (6 , 2 , 1) 10 9 
(5 , 1 , 2) 2 2 (6 , 3 , 1) 11 8 
(5 , 2 , 2) 3 3 (6 , 3 , 2) 12 7 
(5 , 2 , 1) 4 4 (7 , 1 , 1) 13 13 
(5 , 3 , 1) 5 5 (7 , 1 , 2) 14 14 
(5 , 3 , 2) 6 6 (7 , 2 , 2) 16 15 
(6 , 1 , 1) 7 12 (7 , 2 , 1) 16 16 
(6 , 1 , 2) 8 11 (7 , 3 , 1) 17 17 
(6 , 2 , 2) 9 10 (7 , 3 , 2) 18 18 
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The rated capacity of the elevator car is varied between 4, 5 and 6. By calculation, the results 
are tabulated in Table 5.  

 

Table 5 Results of RTT calculation of the multi-floor 3-D elevator system for 
demonstration 

Rated car 
capacity  

Average 
number 
of stops 

Stopping positions of the 5 
passengers on average, in scanned 
sequence numbers 

RTT (single 
riser) 

RTT (dual 
risers) 

4 3.68 4.12, 7.69, 11.29, 14.87  330.33 s 331.21 s 
5 4.47 3.52, 6.50, 9.50, 12.50, 15.48 360.32 s 355.05 s 
6 5.23 3.11, 5.64, 8.21, 10.77, 13.34, 15.90 384.79 s 373.85 s 

 

From Table 5, it can be seen that the up-peak RTTs of both designs do not differ by much from 
each other. Which one is slighter larger very much depends on the overall geometry of the 
building, car capacity and stop distribution. With the consideration of construction complexity 
and cost, one group of vertical hoistways close to the main terminal would be good enough for 
such a 3-D elevator system. 

 

4.2 Non-uniform stop population 

Here, it means that the population of every potential stop varies, like the population of every 
floor varies in a 1-D traffic analysis problem. Readers are reminded that all equations derived 
in section 3 of this article are based on an assumption that every stop is uniformly populated. 
With non-uniform stop population, some trick is needed to manipulate the equations in section 
3. To illustrate the method, we go back to the consideration of a single floor round trip.  

Suppose there are altogether M x Q = N stops on a particular destination floor and each stop is 
associated with ua(i) number of potential passengers, i = 1, ..., N. A new list of stops, amount 
to the sum of all ua’s has to be prepared so that every stop is associated with a single potential 
passenger only. However, one or more stops may share the same physical co-ordinates, (x , y).  

An example is shown below. Suppose M = 2 and Q = 2, i.e. 4 physical stops altogether. Stop 
(1 , 1) has 2 potential passengers; stop (1 , 2) has 3 potential passengers; stop (2 , 2) has 2 
potential passengers; stop (2 , 1) has 1 potential passenger. The new list is generated and shown 
in Table 6. 

Table 6 New list of stops under non-uniform population 

New scanned sequence 
number 

Physical address New scanned sequence 
number 

Physical address 

1 (1 , 1) 5 (1 , 2) 
2 (1 , 1) 6 (2 , 2) 
3 (1 , 2) 7 (2 , 2) 
4 (1 , 2) 8 (2 , 1) 
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Each scanned number is now associated with one potential passenger and all equations in 
section 3 are applicable. The only difference is that when travel time between two stops is 
considered, the exact physical addresses have to be used. If the car needs to travel from scanned 
number “3” to scanned number “4”, travel time has to be zero because they both belong to the 
same physical address. 

The merit of this method is that if a uniform population distribution among stops is considered, 
it is simple to adjust all ua’s = constant, say 1.  Fig. 4(a) and 4(b) show two sets of results by 
Monte Carlo simulation and by calculation using equations in section 3 of this article. 

In scenario 1 (Fig. 4(a)), there are altogether (3 x 4 = 12) stops and the contract capacity of the 
elevator is equal to 5 while the population distribution along the original scanned sequence 
number from 1 to 12 is listed; the first stop has 2 potential passengers; the second stop has 3 
potential passengers etc. 500,000 Monte Carlo simulations were carried out and the average 
RTT = 152.65 s. Statistically, the average RTT by MC for one-stop journeys out of the 500,000 
journeys is 87.84 s with a probability distribution (PDF) of 0.0001, others being similarly. The 
last value of the row “RTT by MC” shows the overall average, i.e. equal to that of “RTT by 
MC”. “RTT by MC CAL” is evaluated by the sum of products between corresponding values 
under “RTT by MC” and “PDF by MC”. Both values agree with each other. The bottom bundle 
of parameters is obtained by calculation using equations in section 3.  

In scenario 2 (Fig. 4(b)), there are altogether (5 x 3 = 15) stops and the contract capacity of the 
elevator is still equal to 5 while the non-uniform population distribution along the original 
scanned sequence number from 1 to 15 is listed. It can be seen from both figures that the 

Figure 4(a) Scenario 1, N = 12        Figure 4(b) Scenario 2, N = 15 

Figure 4(c) Scenario, uniform stop population 
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calculated average RTT’s by Monte Carlo simulation and by calculation agree well with each 
other. It is interesting to note that the RTT per type of stop and its associated probability 
distribution is very much different between the two approaches. That is because under Monte 
Carlo simulation, stops are on a physical address basis while under calculation, stops are on the 
new list of scanned sequence number basis. Their final agreement between each other strongly 
verifies that the calculation method is correct. 

To demonstrate that this method can be applicable to a situation of uniform population. One 
more scenario by putting every stop associated with one potential passenger is considered, the 
results being shown in Fig. 4(c). Again, the two RTT’s by simulation and by calculation agree 
well with each other. It is interesting to note that the individual RTT component and its 
associated probability distribution are also close to each other under two approaches. This is 
because under uniform population distribution, the new list of scanned sequence number is 
identical to the original. 

 

5 CONCLUSIONS 

Several approaches to the traffic analysis of a 2-D or 3-D elevator system were developed by 
the author of this article, jointly with others, method of which was verified by using Monte 
Carlo simulation.  For a true 3-D elevator system, in a previous article [6], a way to estimate 
the up-peak RTT was achieved by linearizing a series of 2-D journeys on the destination floor 
by the “Scanner Method” and forming a very complicated matrix involving the origin and 
destination stops and this method is confined to a single floor application. At the same time, 
such a matrix can become very complicated as the number of stops on a floor gets larger, as 
well as the rated capacity of the car. Also, the designer cannot easily figure out what really 
happens in the complicated matrix.  In a more recent article [9], a way to break down the 
consideration of all combinations of repeatable stops into the consideration of 1-stop, 2-stops 
without repetition, ..., up to P separate stops (P is the number of passengers inside the car) was 
developed, with the help of Order Statistics. By such a process, designers can more easily 
understand the whole process of RTT estimation and suitably adjust the design by pure 
calculation. Two assumptions were made in that article, namely a single floor round trip and 
uniform population of every potential stop on the floor. 

In this article, such two assumptions have been removed so that the up-peak RTT estimation by 
calculation can be readily extended to cover a multiple floor 3-D trip and deal with non-uniform 
population of every potential stop. Of course, the original idea of linearizing a 3-D stop 
distribution into a 1-D line by using the “Scanner Method” is still adopted, so that stops follow 
a properly consecutive scanned sequence numbering policy.  

When a round trip to multiple floors is considered, all stops are placed on a 1-D line with proper 
scanned sequence numbers. Such a sequence can also take care of multiple vertical risers as 
demonstrated in section 4.1. The multiple floors may not be necessarily contiguous but 
grouping contiguous floors into one zone seems to be one common industrial approach in 
destination group control systems [10]. Then, the Order Statistics based up-peak RTT can be 
calculated. When a non-uniform population distribution of stops is considered, each passenger 
of a particular stop is given a unique scanned sequence number but all passengers belonging to 
the same stop share the same physical address. Then, the Order Statistics based up-peak RTT 
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can also be estimated. These two new approaches have been validated by using Monte Carlo 
simulation with great accuracy and demonstrated separately in section 4 of this article for easy 
understanding. Practically, the two approaches must be mixed together to arrive at the result. 

It is hoped that this approach of Order Statistics based calculation method is generic enough to 
deal with a 3-D elevator system involving non-uniform population distribution and multi-floor 
application. Monte Carlo simulation, as its name tells, is still a simulation though its results’ 
fluctuation is often much less than that of a real-time computer simulation. After all, a 
simulation is based on random sampling. But the beauty of calculation is that it can always 
return a unique result. By using the methods presented in this article, the conventional practice 
of doing traffic analysis by an initial calculation followed by computer simulation, also 
recommended by the new ISO 8100-32:2020, can still be maintained even for a 3-D elevator 
system. This approach could allow designers adjust their design to fit the practical environment 
in a much easier way. 
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